CSG140 Computer Graphics. Spring 2004. Quiz \#1

Prof. Futrelle

This quiz is for Thursday 22 January - Closed book/notes

Question 1. For the figure below, transform the endpoints \mathbf{a} and \mathbf{b} of the line segment to transform the line segment. Each transform should be a 3×3 matrix (homogeneous coordinates). The transforms you are to construct and apply are first: Construct a translation matrix that moves the center of the line segment to the origin and then apply it to \mathbf{a} and \mathbf{b}. Second, rotate each resulting point around the origin by -90° (minus 90 degrees). Third, transform those resulting endpoints using the inverse of the original translation. Draw the final state of the line segment, indicating each transformed endpoint, \mathbf{a}^{\prime} and $\mathbf{b}^{\mathbf{\prime}}$. Explain intuitively why you expect it to appear as you computed.

Question 2. Write out the 2×2 rotation matrix $\mathbf{R}(\varphi)$, for the general angle φ, and another, $\mathbf{R}(-\varphi)$, for minus φ. Form the product of $\mathbf{R}(\varphi)$ and $\mathbf{R}(-\varphi)$ and show that it is the identity matrix.

Question 3. Two planes have $[x, y]$ normal vectors $n_{1}=[1,0]$ and $n_{2}=[1,1]$ (no z component). Compute the dot product of the two using Cartesian coordinates and show that the result is equal to the result obtained by using the formulation:
$\mathbf{n}_{1} \cdot \mathbf{n}_{2}=\left\|\mathbf{n}_{1}\right\|\left\|\mathbf{n}_{2}\right\| \cos \varphi$.

