Induction of Decision Trees

Blaž Zupan, Ivan Bratko

magix.fri.uni-lj.si/predavanja/uisp

An Example Data Set and Decision Tree

	Attribute		Class	
Outlook	Company	Sailboat	Sail?	
sunny	big	small	yes	
sunny	med	small	yes	
sunny	med	big	yes	sunny
sunny	no	small	yes	
sunny	big	big	yes	
rainy	no	small	no	yes
rainy	med	small	yes	
rainy	big	big	yes	· · · · · ·
rainy	no	big	no	/
÷	•	• •		no
				SI
	Outlook sunny sunny sunny sunny rainy rainy rainy	AttributeOutlookCompanysunnybigsunnymedsunnynosunnybigrainynorainybigrainybigrainyno	OutlookCompanySailboatSunnybigsmallsunnymedbigsunnynosmallsunnybigbigsunnynosmallrainynosmallrainybigbigrainymedsmallrainynosmallrainybigbigrainynobig	AttributeClassOutlookCompanySailboatSail?sunnybigsmallyessunnymedsmallyessunnymedbigyessunnynosmallyessunnyhigbigyessunnynosmallnorainynosmallnorainybigbigyesrainynosmallnorainybigbignorainynobigno

Data Set (Learning Set) Each example = Attributes + Class Induced description = Decision trees TDIDT Top Down Induction of Decision Trees Recursive Partitioning

Some TDIDT Systems

- ID3 (Quinlan 79)
- CART (Brieman et al. 84)
- Assistant (Cestnik et al. 87)
- C4.5 (Quinlan 93)
- See5 (Quinlan 97)
- ...
- Orange (Demšar, Zupan 98-03)

TDIDT Algorithm

- Also known as ID3 (Quinlan)
- To construct decision tree T from learning set S:
 - If all examples in S belong to some class C Then make leaf labeled C
 - Otherwise
 - select the "most informative" attribute A
 - partition S according to A's values
 - recursively construct subtrees T1, T2, ..., for the subsets of S

	Another Example						
#	t Attribute						
_	Outlook	Temperature	Humidity	Windy	Play		
1	sunny	hot	high	no	N		
2	sunny	hot	high	yes	N		
3	overcast	hot	high	no	Р		
4	rainy	moderate	high	no	Р		
5	rainy	cold	normal	no	Р		
6	rainy	cold	normal	yes	N		
7	overcast	cold	normal	yes	Р		
8	sunny	moderate	high	no	N		
9	sunny	cold	normal	no	Р		
10	rainv	moderate	normal	no	P		

normal

high

normal

high

yes

yes

no

yes

11

12

13

14

sunny

overcast

overcast

rainy

moderate

moderate

hot

moderate

Ρ

Ρ

Ρ

Ν

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Information-Theoretic Approach

- To classify an object, a certain information is needed
 - I, information
- After we have learned the value of A, we only need some remaining amount of information to classify the object
 - Ires, residual information
- Gain
 - Gain(A) = I Ires(A)
- The most 'informative' attribute is the one that minimizes Ires, *i.e.*, maximizes Gain

Triangles and Squares

#		Attribute	Attribute	
	Color	Outline	Dot	
1	green	dashed	no	triange
2	green	dashed	yes	triange
3	yellow	dashed	no	square
4	red	dashed	no	square
5	red	solid	no	square
6	red	solid	yes	triange
7	green	solid	no	square
8	green	dashed	no	triange
9	yellow	solid	yes	square
10	red	solid	no	square
11	green	solid	yes	square
12	yellow	dashed	yes	square
13	yellow	solid	no	square
14	red	dashed	yes	triange

A Defect of Ires

- Ires favors attributes with many values
- Such attribute splits S to many subsets, and if these are small, they will tend to be pure anyway
- One way to rectify this is through a corrected measure of **information gain ratio**.

Information Gain Ratio

• I(A) is amount of information needed to determine the value of an attribute A

$$I(A) = -\sum_{v} p(v) \log_2(p(v))$$

• Information gain ratio

$$GainRatio(A) = \frac{Gain(A)}{I(A)} = \frac{I - I_{res}(A)}{I(A)}$$

Information Gain and Information Gain Ratio

А	v(A)	Gain(A)	GainRatio(A)
Color	3	0.247	0.156
Outline	2	0.152	0.152
Dot	2	0.048	0.049

Gini Index

• Another sensible measure of impurity (i and j are classes)

$$Gini = \sum_{i \neq j} p(i)p(j)$$

• After applying attribute A, the resulting Gini index is

$$Gini(A) = \sum_{v} p(v) \sum_{i \neq j} p(i|v) p(j|v)$$

• Gini can be interpreted as expected error rate

Three Impurity Measures

A	Gain(A)	GainRatio(A)	GiniGain(A)
Color	0.247	0.156	0.058
Outline	0.152	0.152	0.046
Dot	0.048	0.049	0.015

- These impurity measures assess the effect of a single attribute
- Criterion "most informative" that they define is local (and "myopic")
- It does not reliably predict the effect of several attributes applied jointly

Orange: Impurity Measures

import orange
data = orange.ExampleTable('shape')

gain = orange.MeasureAttribute_info
gainRatio = orange.MeasureAttribute_gainRatio
gini = orange.MeasureAttribute_gini

print
print "%15s %-8s %-8s %-8s" % ("name", "gain", "g ratio", "gini")
for attr in data.domain.attributes:
 print "%15s %4.3f %4.3f %4.3f" % \
 (attr.name, gain(attr, data), gainRatio(attr, data), gini(attr, data))

name	gain	g ratio	gini
Color	0.247	0.156	0.058
Outline	0.152	0.152	0.046
Dot	0.048	0.049	0.015

