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Abstract 
This paper describes substantial advances in the analysis 
(parsing) of diagrams using constraint grammars. The 
addition of set types to the grammar and spatial indexing 
of the data make it possible to efficiently parse real 
diagrams of substantial complexity. The system is 
probably the first to demonstrate eficient diagram parsing 
using grammars that easily be retargeted to other 
domains. The work assumes that the diagrams are 
available as a $at collection of graphics primitives: lines, 
polygons, circles, Bezier curves and text. This is 
appropriate for future electronic documents or for 
vectorized diagrams converted from scanned images. The 
classes of diagrams that we have analyzed include x,y data 
graphs and genetic diagrams drawn from the biological 
literature, as well as finite state automata diagrams {states 
and arcs). As an example, parsing a four-part data graph 
composed of 133 primitives required 35 sec using 
Macintosh Common Lisp on a Macintosh Quadra 700. 

Introduction 
Future electronic documents will be enhanced by 

graphics that are represented as structured objects, rather 
than bitmaps. Diagrams of anatomy or cells in textbooks 
could be accessed by their components; maps could be 
accessed by reference to specific buildings or streets, etc. 
Incorporating structured graphics into future information 
systems will require progress on many fronts, including 
systems for analyzing existing graphics, knowledge-based 
tools for creating graphics, and intelligent tools for 
retrieving and interacting with structured graphics. 

There are specialized systems that can efficiently 
analyze complex diagrams (one hundred or more instances 
of primitives). But it has been difficult to adapt them to 
domains other than what they were designed for. At the 
other end of the spectrum, there are approaches to visual 
parsing that use general grammatical models and are thus 
adaptable. But these have not been efficient enough in 
practice to analyze complex diagrams. Our approach is 
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both efficient and adaptable. Many of these systems have 
been applied to domains such as engineering drawings and 
circuit diagrams. But the published technical literature 
contains far more diagrams. For example, the biological 
literature that we focus on publishes about 2.5 million 
diagrams per year, mostly data graphs and gene diagrams. 

Descriptions of certain aspects of our system have been 
published [ l ,  21. In this paper, we first explain our 
constraint grammars and show an example of a complex 
data graph the system can parse. Then a small grammar is 
given and the parsing process is explained in detail. 
Spatial indexing, the key to much of the system's 
efficiency, is described. Some aspects of the large 
grammar used to parse the data graph are discussed (the 
grammar is presented in the Appendix). Gene diagrams 
and finite-state automata diagrams the system has parsed 
are shown. Finally, we discuss the relation of this work to 
other methods. 

Constraint grammars and efficient parsing 
Graphics constraint grammars are particularly useful in 

diagram analysis [2, 31. In these grammars a rule consists 
of a production with a left-hand-side symbol (LHS), one 
or more right-hand-side (RHS) constituents, and a body. 
In our grammar there are two rule types, ordinary rules 
and set rules. Some constituents are primitive graphical 
objects such as lines, polygons, circles, Bezier curves and 
text; others may reference LHS symbols, which are higher 
level objects. The body of the rule contains constraints on 
constituents, including geometric relations among them, 
on set members, and on sets as a whole. Constraints can 
refer to a variety of geometric properties such as position, 
shape, length, size, components (e.g., endpoints of a line, 
center of an object), etc. More powerful constraints 
operate between objects, such as nearness or relative 
position (above, below). The most powerful constraints 
are those that operate across entire sets of objects, such as 
requiring that all the objects in a set be horizontally 
aligned, or connected. These latter relations allow the 
parser to rapidly collect together large sets of related 
items, reducing the effective size of the problem. 
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1. A four-part data gra h consisting of 133 graphics primitives (lines, curves, circles, polygons and text) taken irom [4]. Parsing the 

86 sec was required to precompute the spatial indexes). The parse resulted in 4 solutions, one for each part, including the 
the grammar e 2 in the Appendix, required 35 sec on a Macintosh Quadra 700, running Macintosh Common Lisp 2.0. (An 

of the scale lines with tick marks and tick labels, the axis labels, the data points and data curves. 

et may satisfy a relation, our 
hooser; the maximal set. A precomputed 

e the computation of the 
Solutions of a rule are 

ndirig tuples of constituents in the diagram 
constraints in the body of a rule. At this 

I LHS objects are created with those 
:h LHS object has full status as a 

1 object, with region, bounding box, center, etc., 
participate as a constituent in other rules. 

system, parsing proceeds top-down and depth- 
re is no ordering of constituents implied by the 

he rule controls the order. A user can 
les that lead to efficient parsing by 
nts that cut down on the number of 

that need to be examined or that are passed to 
lution dtrategy is more in the spirit of 
n [5] than classical parsing - limited 
enerated and then further restricted by 

\ 

Example: A simple diagram and a small grammar 
In x,y data graphs, the long scale lines together with 

their short tick marks can involve a large number of lines 
and pieces of text. But these lines have a very regular 
organization, as shown in Fig. 1. When the a-e portions 
of the diagram in Fig. 2 (24 items) are analyzed for 
X-Ticks, a horizontal line with attached tick marks, only 
the two analyses XT1 and XT2 will result, according to 
the grammar G1, below. In particular, 

In a the two ticks on the far left are excluded because 
they don't touch the horizontal line, 

In b, the four lower ticks are aligned with one another, 
forming a set distinct from those in a. 

In c there are only two ticks, less than required. 

In d there are three vertical lines, which are too long. 

In e the ticks are not associated with a horizontal line. 
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The constraint grammar G1 for X-Ticks is: 

Rule 1: 
X-Ticks -> Ticks X-Line 

(X-Line) 
(Ticks (touch X-Line ? )  

:constraints 
(> (number-of Ticks) 2)  ; 

Rule 2: 
X-Line -> Line 

(:constraints 
(horizp Line) (long Line) 1 ; 

Rule 3: 
Ticks -> Set (Line) 

( : element-constraints 
(vertp Line) (short Line)) 

(:constraints (horiz-aligned)); 

For each X-Line solution, the Ticks rule, Rule 3, is 
entered, inheriting the context attribute determined by 
the form "(touch X-Line I?)" in Rule 1.  The value of 
context in this case, the value of "?", is all graphical 
objects which touch the given X-Line. Rule 3 states 
that every Ticks solution is a set, in this case a set of 
Lines. The Lines must be drawn from the set of objects 
in the context inherited by Ticks. The constraints on 
each member of the set are that they are vertical and 
short. The constraints on each set as a whole is that the 
elements are horizontally aligned with one another. 
The processing returns to Rule 1 where the set size 
constraint is imposed, eliminating the two-tick 
structure c.  The top-level Rule 1 is complete, giving 
two solutions XT1 and XT2. 

The analysis is efficient because of the continued 

XT2 

Figure 2. A diagram with 24 lines in the a-e portion which yields two 
X-Tick structures, XT1 and XT2. according to the grammar G1. 

Grammar G1 illustrates our strategy: 

In Rule 1, "(X-Line)" appears first in the body, so it is 
processed first. It refers to X-Line in Rule 2 where it 
expands to the primitive, Line. 
A solution space for X-Line is generated by Rule2 
which consists of all lines which are horizontal and 
long. There are three such lines in Fig. 2, leading to 
three potential solutions. The "long" constraint is one 
related to the overall size of the diagram and to the 
distribution of line lengthsz. 

One of the most important characteristic lengths in diagrams is the 
height (font size) of the smallest text. Anything of that size is considered 
small or short and anything that is many times that size is large or long. 
This follows naturally from the standard conventions that people use for 
constructing diagrams - text is typically made as small as possible 
subject to the constraint that it be clearly legible. The other 

restriction of the context as it is passed down the search 
tree. The set intersections needed for this are performed 
with a linear time algorithm using tagged objects. The 
pre-computed spatial index is used to achieve substantial 
speedup in computing a wide variety of geometric 
relations and constraints. The analysis of Fig. 2 (N=24) 
required 0.28 sec. to parse and return the two solutions 
plus 9 seconds to build the spatial index. 

The approach just described integrates a number of 
techniques that make it easy to write grammars that 
describe a wide variety of types of complex diagrams. But 
at the same time, parsing is efficient. The success of the 
approach rests on a number of factors: 

Matching all aspects of the system to the spatial 
organization that people perceive in diagrams and use 
in drawing diagrams. 

Using sets as a fundamental component of the 
grammatical formalism. 

Using equivalence relations (near, aligned) to partition 
object collections into sets, typically in linear time. 

Using constraints to continually restrict sets until the 
desired solution sets are obtained. 

Performing top-down analysis to effectively direct the 
parsing process. 

Allowing objects to participate in more than one 
structure, e.g., a shared wall between two rooms. This 
is a natural consequence of the constraint approach. 

characteristic length is the width of the page or column in which the 
graphic appears. 
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uilding spatiadly associative indexes of all primitives 
nd derived objects to aid searching and the P omputation of relations. 

iency and Spatial Indexing 
the primitives in a diagram are initially entered into 

dex. In the example below, the index allows us 
just those graphical items that touch a given line, 
set of horizontally aligned items, in a time 

t of the total diagram size. Each cell in the 
corresponds to a square region in the Cartesian 

of the diagram (213 x 213). The finest resolution 
index is typically a 64 x 64 array of cells. In 

, a pyramid containing all smaller arrays of size 
6) is built with each smaller array covering the 

area at a coarser resolution. This allows us to 
scover objects that are more distant from one 

X,Y SPATIAL INDEX y-T-= 
A 

Y 

X 
Xing of graphic primitives. A small portion of the 
ray IS shown. The vertical lines A, B and C, the 
the diagonal line E are shown installed in the 
the Y spatial index. (X index not shown). The 
also installed. The bracketed sets, (....}, are the 

d in or pass through a cell. The Y index set in a 
:ell contents to its right. This figure has N=5 for 
It an additional 10 endpoints are installed before 

e relation with a lower 
of X,Y cells, single X 
ed in which each cell 
all objects installed in 

rtion of the one-dimensional space. The X and Y 
indexes allow horizontally and vertically aligned 

Inverse indexes for all 
ping from objects to 

le of Fig. 3 can be used to understand some 
of p,arsing using grammar G1. The only 

11s containing them. 

X-Line in Fig. 3 found by Rule 2 is line D. 
"(touch X-Line ?)" generates the context value by using 
the inverse index from the line D to obtain the three cells it 
occupies. Then the set of all objects in those cells, the 
lines B, C and D and the endpoints 3 , 5 , 7  and 8 becomes 
the context value that is passed to the Ticks rule. They all 
"touch" the X-Line. The Ticks set rule first filters out all 
but Lines, the type specified for the set elements, leaving 
only B, C and D. It then filters out all but vertical Lines, 
leaving B and C and restricts to short Lines, still leaving B 
and C. It then checks to see if B and C are horizontally 
aligned, which they are, by seeing if their endpoints, e.g., 
their upper endpoints, 3 and 5,  are contained in the same 
Y index cell, which they are. Then a Ticks set solution 
object containing B and C is returned to Rule 1 where, in 
this case, it is rejected because it only has two elements. 

As parsing proceeds, higher-level objects are also 
installed in the spatial index. Thus, references to the Ticks 
object in Fig. 3, would be placedl in the cells occupied by 
the lines B and C. This can be done more efficiently than 
the original installation, since the set of cells occupied by 
B and C are immediately available from the inverse index 
from objects to cells. 

The spatial index can be used to generate or filter 
objects. All objects within some: distance of an object 0 
can be generated by looking in the cells occupied by 0, at 
any chosen level of the spatial index pyramid. If a large 
context is passed to a rule, it can be filtered by generating 
a set obeying a constraint and intersecting it with the 
context. The spatial index car1 also be used to rapidly 
find all objects that are left, right, above or below a given 
object. For example, a search for data points in a graph 
can be done among objects that are above the x scale line 
and right of the y scale line. To find all objects to the right 
of some point P, the X index pyramid is searched from its 
root. The computation requires performing the union of 
the contents of at most n cells, where n is the depth of the 
pyramid, e.g., n=6. The union computation is linear in the 
total number of the (not necessarily distinct) objects in the 
n cells. 

A large grammar for data graphs 
The data graph of Fig. 1 was parsed using grammar G2, 

given in the Appendix. Much of grammar G2 is similar in 
form to G1, but it includes additional constructs. 

Rule X-Line has the ":additional-slots'' construct 
which specifies that an additional attribute be added to the 
LHS, in this case, "left-endpoint'' which is bound to the 
left endpoint of the Line. Rule Y-Axis has the ":null" 
construct that allows the rule to be satisfied with null 
values for any or all of the constituents listed, if they 
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cannot be found. Rule Y-Labels contains the ":largest" 
construct which forces this set rule to return only a single 
solution, the maximal set with the largest number of 
elements. The below constraint in the X-Axis rule contains 
the keyword ":strip", which causes it to ignore all objects 
that are left or right of the X-Axis-Line. 

Basic functions on non-primitives are supported, e.g., 

Other approaches 

There are a number of systems that perform 
interpretation of engineering drawings, circuit diagrams 
and maps [6, 71.3 Such systems usually start from a 
scanned image and try to create a high level description of 
the document. In general, those systems use complex 

189 212 293 315 483 505 553 
: :  . .  * I  * .  . .  . .  . .  . .  7 37 . .  

a .  . .  
TM1 FIEEPTORDCMAIN TM2 C 

Figure 4. A gene diagram (N = 35) parsed with a grammar of eight rules. Parsing required 24 sec plus 14 sec for precomputing the 
sp$ial index.- 

Figure 5. A finite-state automata sketch (FSA), N=124. Parsing required 
65 sec plus 25 sec for precomputin the spatial index. The fact that the 

accurately posed no problems for the parser because the near constraint 
was used. Simple postprocessing of the parse gives the entire state- 
transition table so the FSA can be run. The arrows are recognized from 
their constituent lines, rather than assumed as primitives. 

arc ends and arrowheads were 3 lawn roughly and did not line up 

near, aligned, above. But more specialized functions such 
as a-length for the high-level Data-Line object in Rule 
Data-Lines must be written with some knowledge of the 
structure of the object (e.g., a set of connected lines or 
curves). 

domain-specific knowledge representations, making it 
difficult to apply the methods to different domains. In [8] 
a system for interpretation of large-scale hand-drawn 
logic circuit diagrams is presented. Symbols are 
recognized by a combination of feature extraction and 
pattern matching techniques, while decision trees and 
heuristics control the analysis process. The diagrams 
processed can be composed of up to 400 symbols and 
experimental results have shown that the recognition 
accuracy is about 95%. Other similar systems are the 
REDRAW [9] and GTX 5000 [lo] that provide a more 
general framework for document analysis. The CIPLAN 
[ll] is a system for interpretation maps that uses 
specialized domain knowledge at the pixel and higher 
levels of analysis. It implements a procedural network 
that associates entities with specific procedures for their 
identification. CIPLAN works in the domain of French 
city maps (plats). The application of CIPLAN to plats 
from other countries was not done because it required the 
integration of new specifications into the structure model. 
This is a typical situation in which efficiency is traded for 
adaptability. There is also substantial research in the low 
level aspects of document analysis [12, 131. It mainly 
deals with segmentation, vectorization and feature 
extraction. 

grammars such as we use are 
recognized as useful for expressing relations among 
graphical objects in 2-dimensional space [3]. Others 
include Relation Grammars [ 14, 151, Graphical F-PATR 
Grammars [16], Picture Layout Grammars [17-191 and 

Constraint-based 

While these have been popular application domains, the number of 
diagrams in the world's published technical literature far outstrips these, 
numbering over ten million a year. Our focus is on the biology literature, 
the largest single literature of the sciences, and one that contains a large 
proportion of diagrams. 
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Dis4ussion 

Constraint Set Grammars [20]. Despite the theoretical 
fouidation that these approaches provide, it is not clear 

to use them to achieve efficient parsing for 
icular application domains. Most are based on 

exhaustive bottom-up analysis and as a result, they are 
inefficient, especially in cases of many local matches that 

not part of a complete solution. Wittenburg has 
developed a bottom-up tabular parsing algorithm that has 
successfully applied in the some interactive domains: 
flowchart and mathematical expressions interpretation 

and document design [21]. In [19] an algorithm for 
parsing is presented that is based on the CYK 

parsing algorithm. All of these approaches appear to have 
difficulty parsing diagrams of realistic size. RG/l 
grammars were iritroduced [22] in order to make parsing 
traotable, but the grammars were then not expressive 
enoigh to deal with real diagrams. Wittenburg only gives 

small examples in his various publications, so the 
question of parsing realistic diagrams remains open. 
Colin's thesis [19] gives some of the most detailed 
infcrmation on parsing using constraint grammars, but he 

most important point to be made about the other 
it divides into two classes. 

t class are domain-specific systems that are 
analyzing complex diagrams. But those 

ically have a lot of domain-specific code that 
retargeted to another domain with great effort. 

second class are the more grammar-based 
hes. These pay a lot of attention to proving formal 
es of their grammars or fitting them into a rigorous 

parsing framework. They are capable of 
a variety of domains. But the grammar-based 

not appear to be efficient enough to parse 
of any really complexity, e.g., N=lOO to 200 
Our system has analyzed over twenty diagrams 

oach we have presented in this paper 
the flexibility of domain retargeting by writing 
grammars, with the efficiency of the more 

specific systems, something we believe has not 
d before. Our system appears to succeed 

lishecl biology literature, average N= 120. 

1. Spatial indexing 

2. Sets as a grammar data type 

3. Equivalence relations leading to maximal sets 

4. Successive restriction of contexts through top- 
down analysis 

Feature 1 has been described in detail. Features 2 and 
3 work together. Feature 3 refers to the fact that relations 
such as near and aligned are approximate equivalence 
relations, which we call Generalized Equivalence 
Relations (GERs) [l], e.g., the rdation coincident is a true 
equivalence relation, and near is a generalization of it. 
Diagrams are typically drawn with many items that are 
equivalent in some way, e.g., rectangles of the same size, 
arrowheads that are identical in size, data points that are 
the same shape and size, tick nnarks and their numerical 
labels that are aligned. This organization makes it simpler 
to draw and understand a diagram - it is tuned to the 
visual perceptual abilities that are innate in humans. Our 
system is designed to take advantage of the standard and 
natural paradigms used in diagram design. 

In our top-down parsing strategy, the context is passed 
down as an inherited attribute and additional slots can be 
passed up as synthesized attributes [23]. Also, bounding 
boxes for complex objects are synthesized from 
constituents. 

In conventional parsing, once a constituent is assigned 
a role, it is excluded from consideration for other roles - 
it cannot be "shared". But in graphics, sharing is common 
and our system handles sharing. For example, the analysis 
of Fig. 1 produces a solution with four parts in which each 
axis label, "Time After ..." and "Fraction ..." applies to all 
four graphs and the numeric tick labels apply to the two 
graphs above or to the right. 

The system is written in Macintosh Common Lisp and 
uses the CLOS object system extensively. The grammar 
is preprocessed to discover all high-level objects and 
CLOS classes are created for them, including any 
additional slots specified in the rules. The Common Lisp 
macro facility makes it very easy to map declarative rules 
onto the needed constructors. ,4 visual inspector, DUSI 
(Diagram Understanding System Inspector), has been 
implemented for development purposes that will highlight, 
in color, any CLOS graphic abject in the display and 
conversely, locate the CLOS object corresponding to any 
displayed item. 
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APPENDIX - Grammar 62  for data graphs 

X -Data-Graph -> Axis X-Axis Y-Axis Data 
(Axis) 
(X-Axis Axis) 
(Y-Axis Axis) i (Data (contain Axis ? )  ) ; 

is -> X-Line Y-Line 
(X-Line) 
(Y-Line (touch (left-endpoint X-Line) ? )  

:constraints 
(< (distance (left-endpoint X-Line) (bottom-endpoint Y-Line)) *tiny*)); 

(:additional-slots (left-endpoint (left-endpoint (Line self)))) 
(:constraints (horizp Line) (long Line)); 

Y- ine -> Line 
(:additional-slots (bottom-endpoint (bottom-endpoint (Line self)))) 
(:constraints (vertp Line) (long Line)); 

L 
*********** <X-AXIS > **************** 

( :null X-Text) 
(X-Axis-Line (X-Line context)) 
( X- Tic ks (touch X-Axis-Line ? )  

(X-Labels (below ? X-Axis-Line :strip t)) 

X- is -> X-Axis-Line X-Ticks X-Labels X-Text 

:constraints (>= (size X-Ticks) 2 )  (above X-Ticks X-Axis-Line)) 

(below-nearest ? X-Labels)); 

1 
~ (X-Text 

icks -> Set ( Line ) 
(:element-constraints (vertp Line) (short Line)) 
( :constraint horiz-aligned) ) ; 

X- abels -> Set ( Text ) 
(:element-constraints (horizp Text) (numeric-textp Text)) 
(:constraint horiz-aligned) 
( : largest t ) ; 

X- ext -> Set ( Text ) T ( :largest t) ; 

L 
(:element-constraints (horizp Text)) 

***+******* < Y-AXIS > **************** 
is -> Y-Axis-Line Y-Ticks Y-Labels Y-Text 

(:nu:Ll Y-Ticks Y-Labels Y-Text) 
(Y-Axis-Line (Y-Line context)) 
(Y-Ticks (touch Y-Axis-Line ? )  

( Y- Label s (left ? Y-Axis-Line :strip t)) 
( Y- text (left-nearest ? (or Y-Labels Y-Axis-L,ine))); 

:constraints (right Y-Ticks Y-Axis-Line)) 

Y- icks -> S:et ( Line T (:element-constraints (horizp Line) (short Line)) 



(:constraint vert-aligned); 

Y-Labels -> Set ( Text 
(:element-constraints (horizp Text) (numeric-textp Text)) 
(:constraint vert-aligned) 
(:largest t); 

Y-Text -> Set ( Text 1 
(:element-constraints (vertp Text)) 
(:largest t); 

*********** < > **************** 
Data -> Data-Lines Data-points ; 

Data-Lines -> set ( Data-Line ) 
(:element-constraints (>  (a-length Data-Line) *very-long*)); 

Data-Line -> set ( Line 1 
(:constraint connected); 

Data-Line -> set ( Curve ) 
(:constraint connected); 

Data-Points -> set ( Data-Cluster 1; 

Data-Cluster -> set ( Data-Point ) 
(:constraint same-type); 

Data-Point -> Circle ; 

Data-Point -> Polygon 
(:constraints (rectanglep Polygon) (small Polygon) ) ;  
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