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High-Dimensional Data
• In many areas, we deal with high-dimensional data 

– Computer vision 
– Medical imaging 
– Medical robotics 
– Signal processing 
– Bioinformatics



High-Dimensional Data in Computer Vision

http://blog.1000memories.com/94-number-of-photos-ever-taken-digital-and-analog-in-shoebox



High-Dimensional Data in Computer Vision

http://tech.firstpost.com/news-analysis/now-upload-share-1-8-billion-photos-everyday-meeker-report-224688.html



• Body Level One 
– Body Level Two 

• Body Level Three 
– Body Level Four 

» Body Level Five

High-Dimensional Data in Computer Vision

– 140 billion images 
– 350 million new photos/day
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– 3.8 trillion of photographs 
– 10% in the past 12 months

– 120 million videos 
– 300 hours of video/minute

– 90% of the internet traffic will 
be video by the end of 2017

http://www.buzzfeed.com/hunterschwarz/how-many-photos-have-been-taken-ever-6zgv



• Lossy image representation

Low-Dimensional Manifolds
• Face clustering and classification

6

S2S1

Hybrid Linear Models 0 Versus Linear Models
A single linear model

stack
Linear

Hybrid linear

Hybrid linear models

stack

• Motion segmentation • DT segmentation • Video segmentation



Two Fundamental Tasks
• Clustering of data in low-dimensional manifolds 









• Classification of data in low-dimensional manifolds

 ?



Talk Outline
• Introduction to Subspace Clustering 


• Generalized Principal Component Analysis (GPCA) 

– Polynomial fitting and factorization 


• Sparse Subspace Clustering (SSC) 
– Matrix of coefficients is sparse 


• Low Rank Subspace Clustering (LRSC) 

– Matrix of coefficients is low-rank 


• Applications:  
– Face clustering 
– Motion/video segmentation

R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA). CVPR 2003, CVPR 2004, PAMI 2005. 
E. Elhamifar and R. Vidal. Sparse Subspace Clustering (SSC). CVPR 2009, ICASSP 2010, PAMI 2013. 
P. Favaro, A. Ravichandran and R. Vidal. Low Rank Subspace Clustering (LRSC). CVPR 2011.



Introduction to Subspace Clustering

René Vidal



Principal Component Analysis (PCA)
• Given a set of points lying in one subspace, identify 

– Geometric PCA: find a subspace S passing through them 
– Statistical PCA: find projection directions that maximize the variance 






• Solution (Beltrami’1873, Jordan’1874, Hotelling’33, Eckart-Householder-Young’36) 



• Applications: 
– Signal/image processing, computer vision (eigenfaces), machine 

learning, genomics, neuroscience (multi-channel neural recordings)
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Subspace Clustering Problem
• Given a set of points lying in multiple subspaces, identify 

– The number of subspaces and their dimensions 
– A basis for each subspace 
– The segmentation of the data points 


• Challenges 

– Model selection  
– Nonconvex 
– Combinatorial 


• More challenges 
– Noise 
– Outliers 
– Missing entries



Subspace Clustering Problem: Challenges
• Even more challenges 

– Angles between subspaces are small 
– Nearby points are in different subspacesCHAPTER 3. SPARSE SUBSPACE CLUSTERING
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Figure 3.9: Left: percentage of pairs of subspaces whose smallest principal angle is smaller
than a given value. Right: percentage of data points in pairs of subspaces whose K nearest
neighbors contain points from the other subspace.

solution of the low-rank optimization program prior to clustering.

Implementation details. We implement the SSC optimization algorithm in (3.55)

using the Alternating Direction Method of Multipliers (ADMM) framework [92, 93]

described in Section 3.5. In all motion segmentation experiments, we set (�e,�z) =

(+�, 10/µz) and in all face clustering experiments, we set (�e,�z) = (20/µe,+�).

For the state of the art, we use the codes provided by their authors. As LSA and

SCC need to know the number of subspaces a priori and determining the number

of subspaces from eigenspectrum in the noisy setting is more di�cult, in order to

have a fair comparison, we provide the number of subspaces as an input to all the

algorithms.

Datasets and some statistics. For the motion segmentation problem, we consider

the Hopkins 155 dataset [94], which consists of 155 video sequences with 2 or 3 motions

in each video corresponding to 2 or 3 low-dimensional subspaces [2, 95]. For the face
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Prior Work: Iterative-Probabilistic Methods
• Approach 

– Given segmentation, estimate subspaces 
– Given subspaces, segment the data 
– Iterate till convergence 


• Representative methods 
– K-subspaces (Bradley-Mangasarian ’00, Kambhatla-Leen ’94,  

Tseng’00, Agarwal-Mustafa ’04, Zhang et al. ’09, Aldroubi et al. ’09) 
– Mixtures of PPCA (Tipping-Bishop ’99, Grubber-Weiss ’04,  

Kanatani ’04, Archambeau et al. ’08, Chen ’11)

Advantages Disadvantages / Open Problems

Simple, intuitive Known number of subspaces and dimensions

Missing data Sensitive to initialization and outliers



Prior Work: Algebraic-Geometric Methods
• Approach 

– Number of subspaces = degree of polynomial 
– Subspaces = factors of polynomial 



• Representative methods 
– Factorization (Boult-Brown’91, Costeira-Kanade’98, Gear’98,  

Kanatani et al.’01, Wu et al.’01, Sekmen’13)  

– GPCA (Shizawa-Maze ’91, Vidal et al. ’03 ’04 ’05, Huang et al. ’05,  
Yang et al. ’05, Derksen ’07, Ma et al. ’08, Ozay et al. ‘10)

Advantages Disadvantages / Open Problems

Closed form Complexity

Arbitrary dimensions Sensitive to noise, outliers, missing entries



Prior Work: Spectral-Clustering Methods
• Approach 

– Data points           = graph nodes 
– Pairwise similarity = edge weights 
– Segmentation       = graph cut 


• Representative methods 
– Local (Zelnik-Manor ’03, Yan-Pollefeys ’06, Fan-Wu ’06, Goh-Vidal ’07, Sekmen’12) 
– Global (Govindu ’05, Agarwal et al. ’05, Chen-Lerman ’08, Lauer-Schnorr ’09, Zhang et al. ’10)

Advantages Disadvantages / Open Problems

Efficient Known number of subspaces and dimensions

Robust Global methods are complex



Prior Work: Sparse and Low-Rank Methods
• Approach 

– Data are self-expressive 
– Global affinity by convex optimization 


• Representative methods 
– Sparse Subspace Clustering (SSC)  

(Elhamifar-Vidal ’09 ’10 ‘13, Candes ’12 ‘13)  

– Low-Rank Subspace Clustering (LRSC) 
(Liu et al. ’10 ‘13, Favaro-Vidal ’11 ’13) 

– Sparse + Low-Rank (Wang ‘13)

Advantages Disadvantages / Open Problems

Efficient, Convex Low-dimensional subspaces

Robust Missing entries



Prior Work on Subspace Clustering



Generalized Principal Component Analysis 
(GPCA)

 
René Vidal, Yi Ma and Shankar Sastry 



GPCA: Representing One Subspace
• One plane 




• One line 







• One subspace can be represented with 
– Set of linear equations 
– Set of polynomials of degree 1

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.



GPCA: Representing a Union of Subspaces
• One subspace 






• Two subspaces 







• A union of n subspaces can be represented with a set of 
homogeneous polynomials of degree n 

R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003. 
Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.



De Morgan’s rule

GPCA: Representing n Subspaces
• Two planes 





• One plane and one line 
– Plane: 
– Line: 






• A union of n subspaces can be represented with a set of 
homogeneous polynomials of degree n

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.



GPCA: Fitting Polynomials to Data Points
• Polynomials are linear in their coefficients 






• Coefficients can be computed linearly from the nullspace of 
the embedded data matrix 
– Solve using least squares 
– N = #data points 





• Number of subspaces can be found from rank of embedded 
data matrix

R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003. 
Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.
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GPCA Algorithm by Polynomial Factorization
• Basis for each subspace 






• Polynomial Factorization Algorithm 
– Find roots of polynomial of degree n in one variable 
– Solve D-2 linear systems in n variables 


• Problems 

– Computing roots may be sensitive to noise 
– The estimated polynomial may not perfectly factor with noisy data

c

T ⌫n(x) = (bT1 x) · · · (b
T
nx)

c 2 RMn

b1 b2 · · · bn

R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003.



GPCA Algorithm Polynomial Differentiation

• To learn a mixture of subspaces we just need one positive 
example per class

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.



GPCA Algorithm Polynomial Differentiation
• With noise and outliers  

– Polynomials may not be a perfect union of subspaces 









– Normals can estimated correctly by choosing points optimally 
• Distance to closest subspace without knowing segmentation?

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005..



GPCA: Algorithm for Hyperplane Clustering
• Coefficients of the polynomial can be computed from null 

space of embedded data matrix 
– Solve using least squares 
– N = #data points 


• Number of subspaces can be computed from the rank of 

embedded data matrix 



• Normal to the subspaces      can be computed 
from the derivatives of the polynomial

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.



Temporal Video Segmentation by GPCA



Temporal Video Segmentation by GPCA
• Empty living room 
• Middle-aged man enters 
• Woman enters 
• Young man enters, introduces the 

woman and leaves 
• Middle-aged man flirts with 

woman and steals her tiara

• Middle-aged man checks the 
time, rises and leaves 

• Woman walks him to the door 
• Woman returns to her seat 
• Woman misses her tiara 
• Woman searches her tiara 
• Woman sits and dismays



Sparse Subspace Clustering 
(SSC)

 
Ehsan Elhamifar and René Vidal 



• Spectral clustering 
– Represent data points as nodes in graph  
– Connect nodes     and     with weight  
– Infer clusters from Laplacian of  







• How to define a good affinity matrix       
for subspaces? 
– points in the same subspace:  
– points in different subspaces:  

Sparse Subspace Clustering: Spectral Clustering

G
i j cij

G

cij = 0
cij 6= 0
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• Spectral curvature clustering (SCC) (Chen-Lerman ’08) 
– Define multiway similarity as normalized volume of d+1 points 





• Local subspace affinity (LSA) (Yan-Pollefeys ’06) 
– Use the angles between locally fitted subspaces as similarity

Sparse Subspace Clustering: Spectral Clustering



Sparse Subspace Clustering: Intuition

• Data in a union of subspaces are self-expressive 




• Union of subspaces admits subspace-sparse representation 







• Under what conditions on the subspaces and the data 
– L0 = subspace sparse? 


– L1 = subspace sparse?

S1

S3 S2
S2

S3

S1

E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009. 
E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010. 
E. Elhamifar and R. Vidal. Sparse Subspace Clustering: Algorithm, Theory and Applications. TPAMI 2013.

P1 : min kcik1 s.t. yi = Y ci, cii = 0

yi =
NX

j=1

cjiyj =) yi = Y ci =) Y = Y C



Sparse Subspace Clustering: Noiseless Data

• Theorem 1:      recovers a subspace-sparse representation if 
– Subspaces are independent:

dim
⇣ nM

i=1

Si

⌘
=

nX

i=1

dim(Si)

S1

S2

E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009.

P1

P1 : min kcik1 s.t. yi = Y ci, cii = 0



Sparse Subspace Clustering: Noiseless Data

• Theorem 2:      recovers a subspace-sparse representation if 
– Subspaces are disjoint: 


– Subspaces are sufficiently well separated 

and data are sufficiently well distributed 




•     is the smallest subspace angle between subspaces i and j 
– subspace angles decrease            harder recovery 


•            is the smallest singular value in each subspace 

– data closer to a degenerate subspace            harder recovery

Si � Sj = {0}

max

rank(Ȳ i)=di

⇥di(
¯Y i) >

p
di max

j 6=i
cos(�ij)

✓ij

�di(Ȳi)

S2

S3

S1

E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010.

P1

P1 : min kcik1 s.t. yi = Y ci, cii = 0



Sparse Subspace Clustering: Noiseless Data

• Theorem 3:  
– n d-dimensional subspaces chosen independently, uniformly at random 
– r d + 1 points per subspace chosen independently, uniformly at random 
–       recovers a subspace-sparse representation with high probability ifP1

A geometric analysis of subspace clustering with outliers. M. Soltanolkotabi and E. J. Candes. Annals of Statistics 40(4), 2195–2238.

d <
c2(r) log ⇢

12 logN
D

P1 : min kcik1 s.t. yi = Y ci, cii = 0



Sparse Subspace Clustering: Data with Outliers

• Assumptions 
– n d-dimensional subspaces chosen independently, uniformly at random 
– r d + 1 inliers per subspace chosen independently, uniformly at random 
– Noutliers outliers chosen independently and uniformly at random 
– Declare point i as an outlier if the solution to P1 satisfies 



• Theorem 4: 
–       correctly detects all outliers with high probability if 



–       does not detect any inlier as an outlier if

P1

A geometric analysis of subspace clustering with outliers. M. Soltanolkotabi and E. J. Candes. Annals of Statistics 40(4), 2195–2238.

N
outliers

<
1

D
ec

p
D �N

inliers

kcik1 > �(�)
p
D

P1
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Sparse Subspace Clustering: Corrupted Data

• When the data are corrupted with noise 



• When the data have missing entries 
– Let                          be the indices of the missing entries in 
– Form                    and                           by eliminating rows of       and  

     indexed by   , and solve the same optimization problems 


• When the data are corrupted with outlying entries 
– Let                                                    be corrupted by a vector 


– The vector                      is still sparse and can be recovered from

min⇥ci⇥1 + µ ⇥yi � Y ci⇥2

I � {1, . . . , D} y � RD
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S. Rao, R. Tron, R. Vidal and Y. Ma. Robust Motion Segmentation, CVPR 2008, PAMI 2009. 
E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009. 
E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010.



Sparse Subspace Clustering: Algorithm

• Represent data points as nodes in graph 



• Find the sparse coefficient vectors                




• Connect nodes    and    by an edge with  
weight  



• Spectral clustering: apply K-means to the 
smallest eigenvectors of the Laplacian of

i

{ci}N
i=1

G

G

j

|cij | + |cji|

min⇥ci⇥1 + µ ⇥yi � Y ci⇥2



Low Rank Subspace Clustering 
(LRSC)

 
Paolo Favaro and René Vidal 



• Spectral clustering 
– Represent data points as nodes in graph  
– Connect nodes     and     with weight  
– Infer clusters from Laplacian of  







• How to define a good affinity matrix       
for subspaces? 
– points in the same subspace:  
– points in different subspaces:  

Sparse Subspace Clustering: Spectral Clustering

G
i j cij

G

cij = 0
cij 6= 0

C



Sparse Subspace Clustering: Intuition

• Data in a union of subspaces are self-expressive 




• Union of subspaces admits subspace-sparse representation 







• Sparse Subspace Clustering

S1

S3 S2
S2

S3

S1

E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009. 
E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010. 
E. Elhamifar and R. Vidal. Sparse Subspace Clustering: Algorithm, Theory and Applications. TPAMI 2013.

P1 : min kcik1 s.t. yi = Y ci, cii = 0

yi =
NX

j=1

cjiyj =) yi = Y ci =) Y = Y C



Subspace Clustering by Matrix Factorization
• Data from i-th subspace can be factorized as 








• Segmentation of the data can be obtained from 
– Leading singular vector of               (Boult and Brown ’91)  
– Shape interaction matrix                  (Costeira & Kanade ’95, Gear ’94) 


•              if points i and j lie in two  
independent subspaces (Kanatani et al. ’01, Vidal et al. ’08)

C = VV>

Cij = 0

Y � = [Y1, Y2, . . . , Yn] = [U1, U2, . . . , Un]
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>
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Low Rank Subspace Clustering
• Data in a union of subspaces are self-expressive 






• Low Rank Subspace Clustering (noiseless case) 





• Low Rank Subspace Clustering (noisy case)

yi =
NX

j=1

cjiyj =) yj = Y ci =) Y = Y C
– C is sparse 
– C is low-rank

min
C

kCk⇤ s.t. Y = Y C
C = VV>
Y = U�V>

=)

min
C

kCk⇤ +
�

2
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��2)V>=)



Applications in Computer Vision



Experiments on 3D Motion Segmentation
• Motion segmentation problem 

– Input: multiple images of a scene with multiple rigid-body motions 
– Output: number of motions, motion model parameters, segmentation 







• Motion of a rigid-body: 4D subspace (Boult and Brown ’91, Tomasi and Kanade ’92) 
– P = #points 
– F = #frames
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Vidal et al., ECCV02, IJCV06; Vidal, Ma and Sastry CVPR03, PAMI05; Vidal and Sastry CVPR03; 
Vidal and Ma ECCV04, JMIV06; Vidal and Hartley, CVPR04; Tron and Vidal, CVPR07; Li et al. 
CVPR07; Goh and Vidal CVPR07; Vidal and Hartley, PAMI08; Vidal, Tron and Hartley IJCV08; 
Rao et al. CVPR 08, PAMI 09; Elhamifar and Vidal, CVPR 09, TPAMI 13; Vidal SPM11; Tsakiris ‘15



Experiments on 3D Motion Segmentation
• Misclassification rates on Hopkins 155 database

R. Tron and R. Vidal. A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms. CVPR 2007.
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Vidal et al., ECCV02, IJCV06; Vidal, Ma and Sastry CVPR03, PAMI05; Vidal and Sastry CVPR03; 
Vidal and Ma ECCV04, JMIV06; Vidal and Hartley, CVPR04; Tron and Vidal, CVPR07; Li et al. 
CVPR07; Goh and Vidal CVPR07; Vidal and Hartley, PAMI08; Vidal, Tron and Hartley IJCV08; 
Rao et al. CVPR 08, PAMI 09; Elhamifar and Vidal, CVPR 09, TPAMI 13; Vidal SPM11; Tsakiris ‘15



Experiments on Video Segmentation
• Model each video segment as a low-dimensional subspace 
• Cluster video frames into multiple segments 












• Advantages 
– SSC easily detects sharp transitions in the video 
– SSC can handle camera motion and scene variations



Experiments on Video Segmentation
• Model each video segment as a low-dimensional subspace 
• Cluster video frames into multiple segments 












• Advantages 
– SSC easily detects sharp transitions in the video 
– SSC can handle camera motion and scene variations



Experiments on Face Clustering







• Faces under varying illumination 
– 9D subspace 

• Extended Yale B dataset 
– 38 subjects 
– 64 images per subject 

• Clustering error 
– SSC < 2.0% error for 2 subjects 
– SSC < 11.0% error for 10 subjects

E. Elhamifar and R. Vidal, Sparse Subspace Clustering: Algorithm, Theory, and Applications, TPAMI13.
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Conclusions
• Many problems in computer vision can be posed as subspace 

clustering and classification problems 
– Spatial and temporal video segmentation 
– Face clustering under varying illumination 
– Face classification 


• These problems can be solved using 

– Generalized Principal Component Analysis (GPCA) 
– Sparse Subspace Clustering (SSC) 
– Low Rank Subspace Clustering (LRSC) 


• This algorithms is provably correct when 

– Subspaces are sufficiently separated 
– Data are well distributed within each subspace



What’s Next
• Big Data (Peng ’13, Dyer ’13, You ’15) 








• Missing Data: (Grubber ’04, Eriksson ’12, Balzano ’12, Pimentel ’14, Candes ’14, Yang’15) 


GPCA SSC OMP ?

Dimension of the data 10 10,000 10,000 1M

Number of data points 1000 10,000 100,000 1M Chong You

Congyuan 
Yang
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