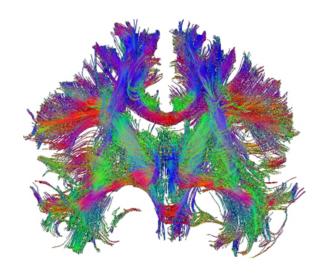
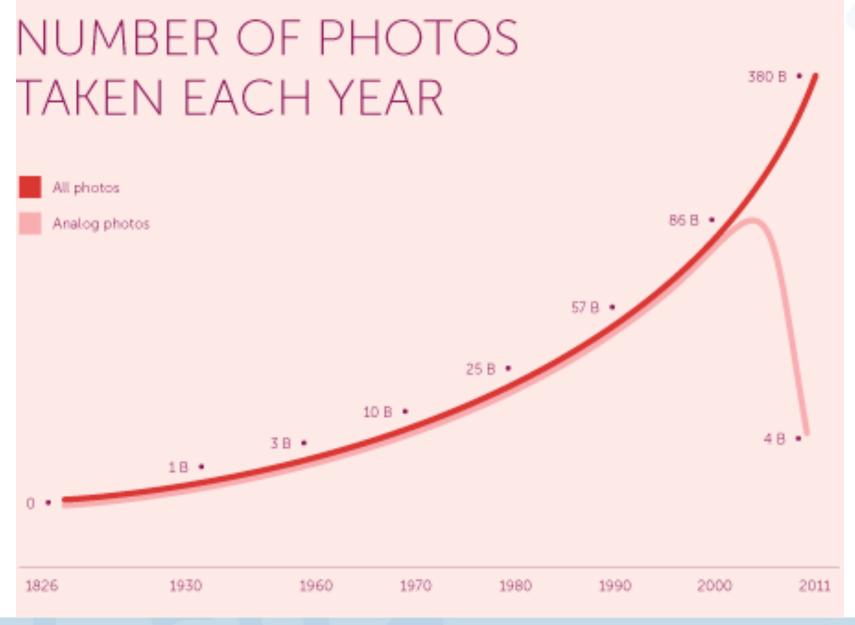


High-Dimensional Data

- In many areas, we deal with high-dimensional data
 - Computer vision
 - Medical imaging
 - Medical robotics
 - Signal processing
 - Bioinformatics

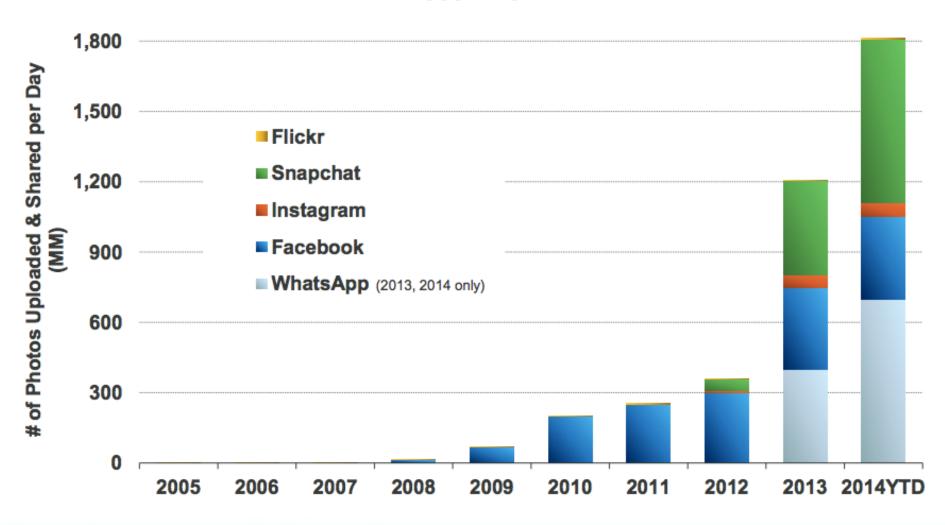


High-Dimensional Data in Computer Vision



High-Dimensional Data in Computer Vision

Daily Number of Photos Uploaded & Shared on Select Platforms, 2005 – 2014YTD



High-Dimensional Data in Computer Vision

facebook

- 140 billion images
- 350 million new photos/day

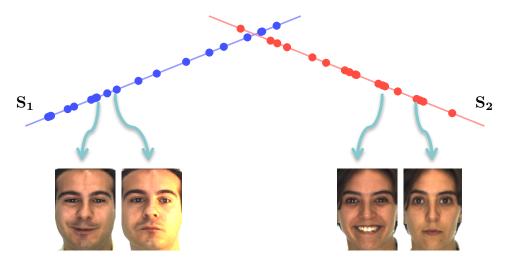
- 3.8 trillion of photographs
- 10% in the past 12 months

- 120 million videos
- 300 hours of video/minute

 90% of the internet traffic will be video by the end of 2017

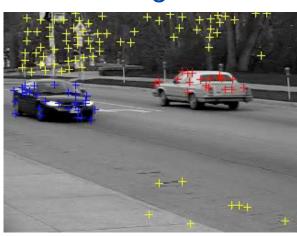
Low-Dimensional Manifolds

Face clustering and classification



Lossy image representation

Motion segmentation



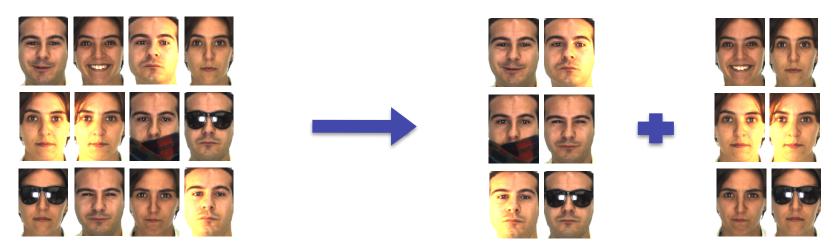
DT segmentation



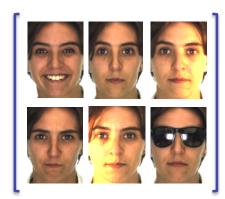
Video segmentation

Two Fundamental Tasks

Clustering of data in low-dimensional manifolds

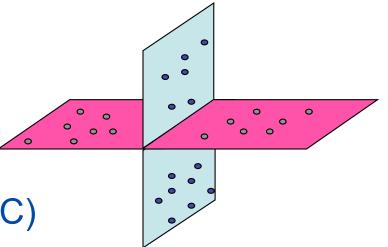


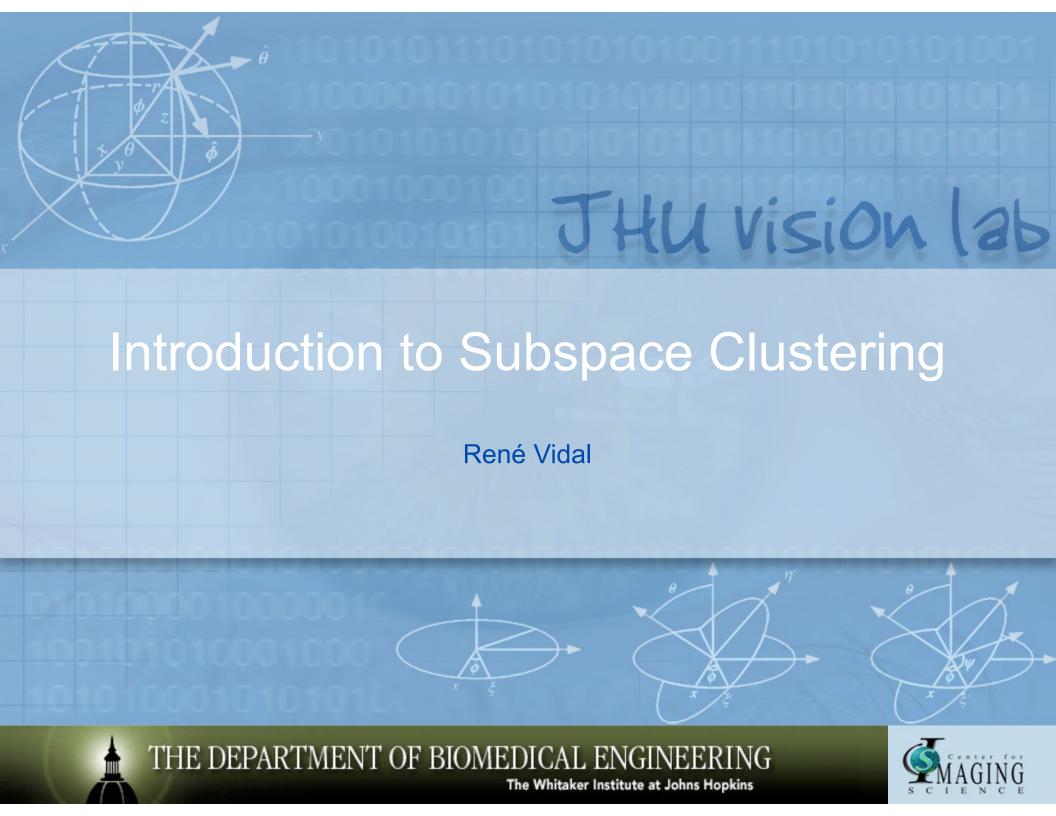
Classification of data in low-dimensional manifolds



Talk Outline

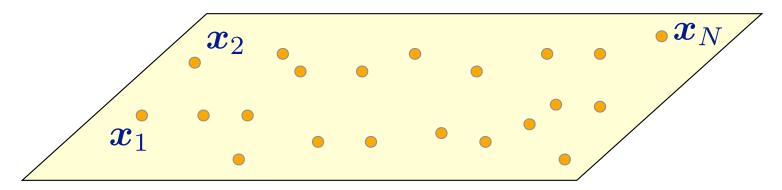
- Introduction to Subspace Clustering
- Generalized Principal Component Analysis (GPCA)
 - Polynomial fitting and factorization
- Sparse Subspace Clustering (SSC)
 - Matrix of coefficients is sparse
- Low Rank Subspace Clustering (LRSC)
 - Matrix of coefficients is low-rank
- Applications:
 - Face clustering
 - Motion/video segmentation





Principal Component Analysis (PCA)

- Given a set of points lying in one subspace, identify
 - Geometric PCA: find a subspace S passing through them
 - Statistical PCA: find projection directions that maximize the variance



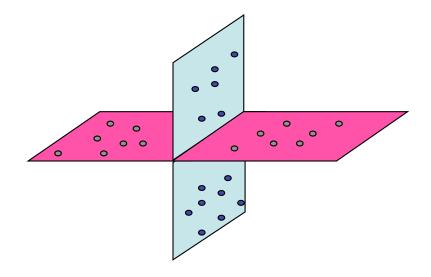
• Solution (Beltrami'1873, Jordan'1874, Hotelling'33, Eckart-Householder-Young'36)

$$U\Sigma V^{ op} = egin{bmatrix} oldsymbol{x}_1 & oldsymbol{x}_2 & \cdots & oldsymbol{x}_N \end{bmatrix} \in \mathbb{R}^{D imes N}$$

- Applications:
 - Signal/image processing, computer vision (eigenfaces), machine learning, genomics, neuroscience (multi-channel neural recordings)

Subspace Clustering Problem

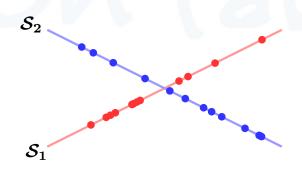
- Given a set of points lying in multiple subspaces, identify
 - The number of subspaces and their dimensions
 - A basis for each subspace
 - The segmentation of the data points
- Challenges
 - Model selection
 - Nonconvex
 - Combinatorial
- More challenges
 - Noise
 - Outliers
 - Missing entries

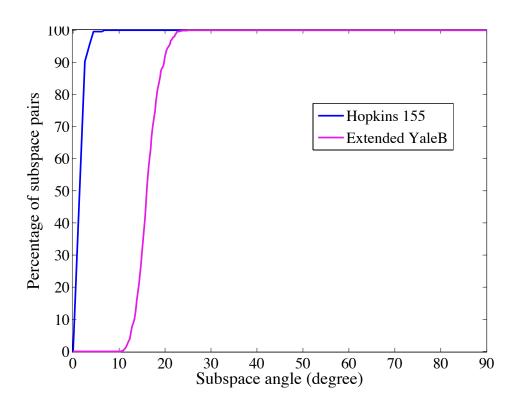


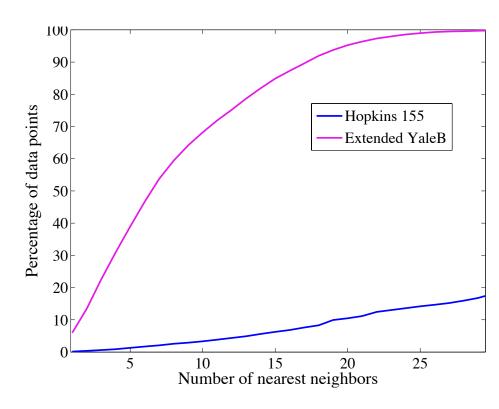
Subspace Clustering Problem: Challenges

Even more challenges

- Angles between subspaces are small
- Nearby points are in different subspaces



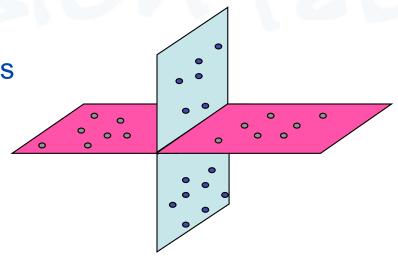




Prior Work: Iterative-Probabilistic Methods

Approach

- Given segmentation, estimate subspaces
- Given subspaces, segment the data
- Iterate till convergence



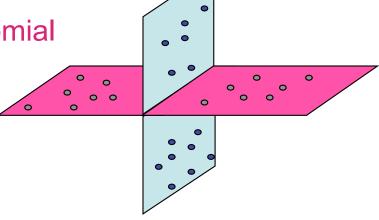
Representative methods

- K-subspaces (Bradley-Mangasarian '00, Kambhatla-Leen '94, Tseng'00, Agarwal-Mustafa '04, Zhang et al. '09, Aldroubi et al. '09)
- Mixtures of PPCA (Tipping-Bishop '99, Grubber-Weiss '04, Kanatani '04, Archambeau et al. '08, Chen '11)

Advantages	Disadvantages / Open Problems
Simple, intuitive	Known number of subspaces and dimensions
Missing data	Sensitive to initialization and outliers

Prior Work: Algebraic-Geometric Methods

- Approach
 - Number of subspaces = degree of polynomial
 - Subspaces = factors of polynomial



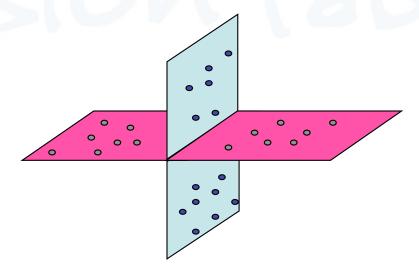
- Representative methods
 - Factorization (Boult-Brown'91, Costeira-Kanade'98, Gear'98, Kanatani et al.'01, Wu et al.'01, Sekmen'13)
 - GPCA (Shizawa-Maze '91, Vidal et al. '03 '04 '05, Huang et al. '05, Yang et al. '05, Derksen '07, Ma et al. '08, Ozay et al. '10)

Advantages	Disadvantages / Open Problems
Closed form	Complexity
Arbitrary dimensions	Sensitive to noise, outliers, missing entries

Prior Work: Spectral-Clustering Methods

Approach

- Data points = graph nodes
- Pairwise similarity = edge weights
- Segmentation = graph cut



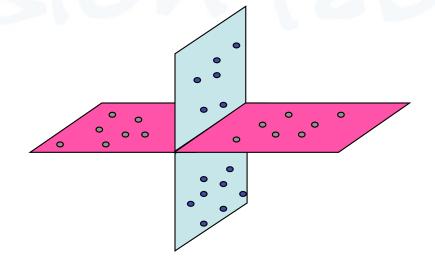
Representative methods

- Local (Zelnik-Manor '03, Yan-Pollefeys '06, Fan-Wu '06, Goh-Vidal '07, Sekmen'12)
- Global (Govindu '05, Agarwal et al. '05, Chen-Lerman '08, Lauer-Schnorr '09, Zhang et al. '10)

Advantages	Disadvantages / Open Problems
Efficient	Known number of subspaces and dimensions
Robust	Global methods are complex

Prior Work: Sparse and Low-Rank Methods

- Approach
 - Data are self-expressive
 - Global affinity by convex optimization



- Representative methods
 - Sparse Subspace Clustering (SSC)
 (Elhamifar-Vidal '09 '10 '13, Candes '12 '13)
 - Low-Rank Subspace Clustering (LRSC)
 (Liu et al. '10 '13, Favaro-Vidal '11 '13)
 - Sparse + Low-Rank (Wang '13)

Advantages	Disadvantages / Open Problems
Efficient, Convex	Low-dimensional subspaces
Robust	Missing entries

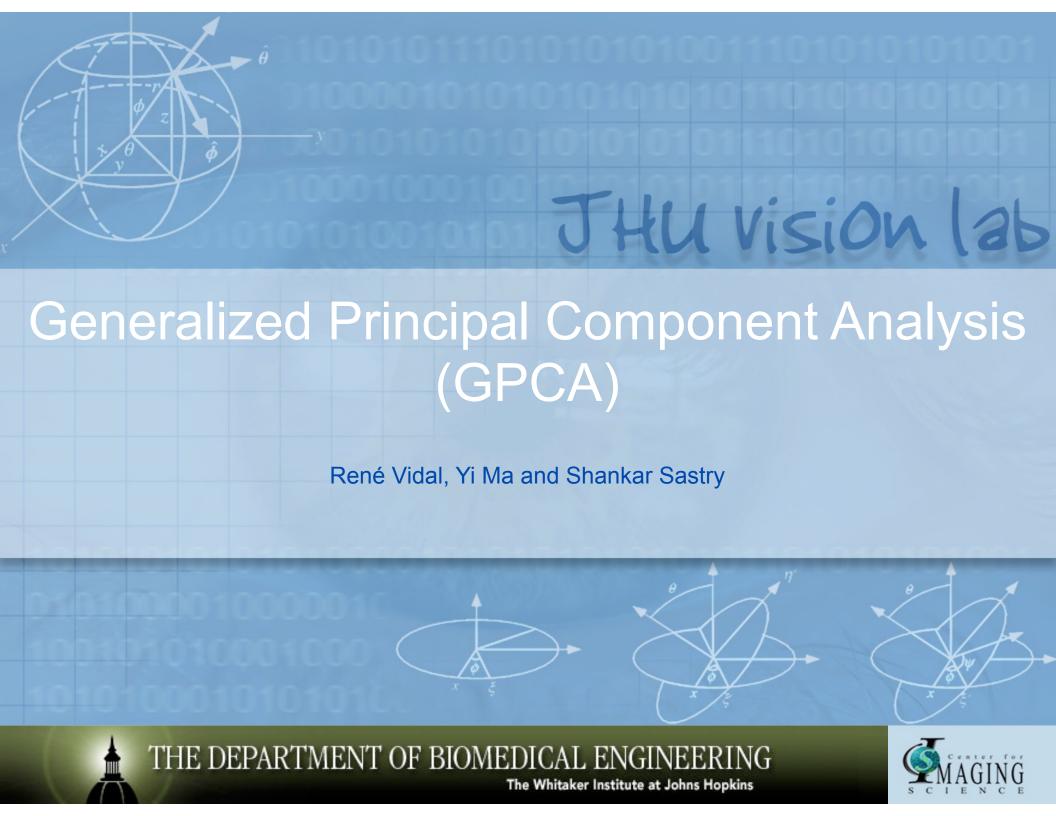
Prior Work on Subspace Clustering

Signal Processing | Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

René Vidal

Subspace Clustering

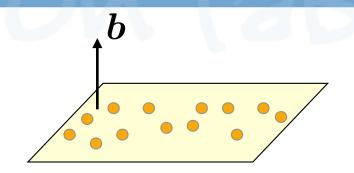
Applications in motion segmentation and face clustering



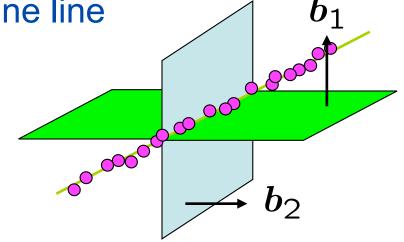
GPCA: Representing One Subspace

One plane

$$b^T x = b_1 x_1 + b_2 x_2 + b_3 x_3 = 0$$



One line



$$b_1^T x = b_1 x_1 + b_2 x_2 + b_3 x_3 = 0$$

$$\boldsymbol{b}_2^T \boldsymbol{x} = b_4 x_1 + b_5 x_2 + b_6 x_3 = 0$$

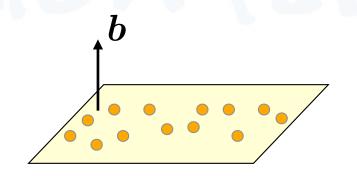
- One subspace can be represented with
 - Set of linear equations
 - Set of polynomials of degree 1

$$S = \{x : B^T x = 0\}$$

GPCA: Representing a Union of Subspaces

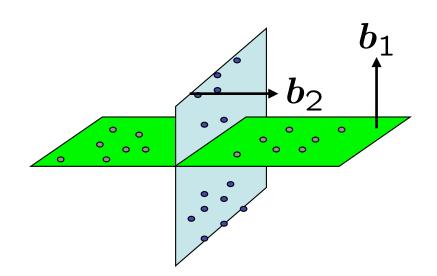
One subspace

$$b^T x = b_1 x_1 + b_2 x_2 + b_3 x_3 = 0$$



Two subspaces

$$(b_1^T x = 0)$$
 or $(b_2^T x = 0)$ $p_2(x) = (b_1^T x)(b_2^T x) = 0$



 A union of n subspaces can be represented with a set of homogeneous polynomials of degree n

GPCA: Representing *n* Subspaces

Two planes $(\boldsymbol{b}_1^T \boldsymbol{x} = 0)$ or $(\boldsymbol{b}_2^T \boldsymbol{x} = 0)$ $p_2(x) = (b_1^T x)(b_2^T x) = 0$ One plane and one line - Plane: $S_1 = \{x : b^T x = 0\}$ $S_2 = \{x : b_1^T x = b_2^T x = 0\}$ – Line: $S_1 \cup S_2 = \{x : (b^T x = 0) | \text{or } (b_1^T x = b_2^T x = 0) \}$ De Morgan's rule

$$S_1 \cup S_2 = \{x : (b^T x)(b_1^T x) = 0 \text{ and } (b^T x)(b_2^T x) = 0\}$$

 A union of n subspaces can be represented with a set of homogeneous polynomials of degree n

GPCA: Fitting Polynomials to Data Points

Polynomials are linear in their coefficients

$$(\boldsymbol{b}_1^{\top} \boldsymbol{x})(\boldsymbol{b}_2^{\top} \boldsymbol{x}) = c_1 x_1^2 + c_2 x_1 x_2 + c_3 x_2^2 = \boldsymbol{c}^{\top} \nu_n(\boldsymbol{x}) = 0$$

- Coefficients can be computed linearly from the nullspace of the embedded data matrix
 - Solve using least squares
 - N = #data points

$$L_n oldsymbol{c} = egin{bmatrix}
u_n(oldsymbol{x}_1)^{ op} \ dots \
u_n(oldsymbol{x}_N)^{ op} \end{bmatrix} oldsymbol{c} = oldsymbol{0}$$

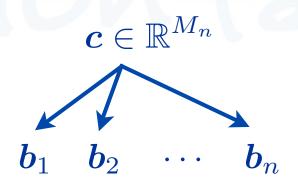
Number of subspaces can be found from rank of embedded data matrix

$$n = \min\{i : L_i \text{ drops rank}\}$$

GPCA Algorithm by Polynomial Factorization

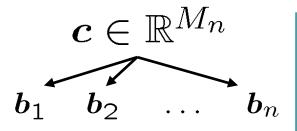
Basis for each subspace

$$\boldsymbol{c}^T \nu_n(\boldsymbol{x}) = (\boldsymbol{b}_1^T \boldsymbol{x}) \cdots (\boldsymbol{b}_n^T \boldsymbol{x})$$

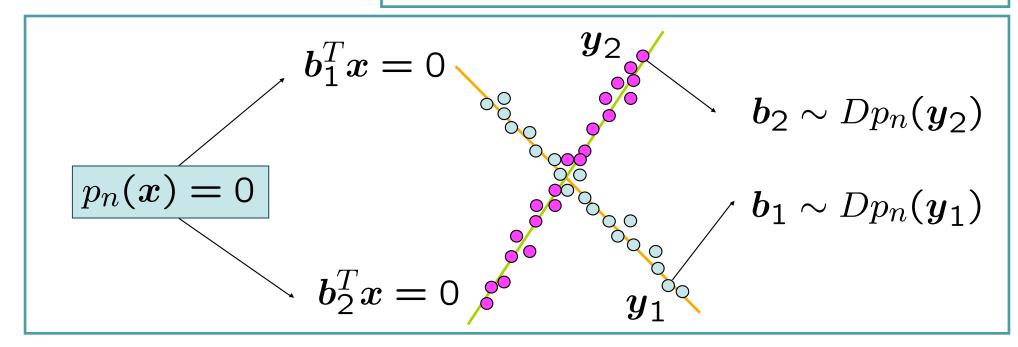


- Polynomial Factorization Algorithm
 - Find roots of polynomial of degree n in one variable
 - Solve D-2 linear systems in n variables
- Problems
 - Computing roots may be sensitive to noise
 - The estimated polynomial may not perfectly factor with noisy data

GPCA Algorithm Polynomial Differentiation



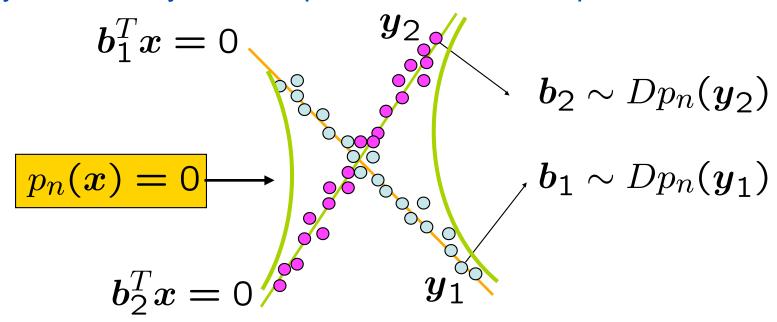
$$|\boldsymbol{b}_i = Dp_n(\boldsymbol{x})|_{\boldsymbol{x} = \boldsymbol{y}_i} \quad \boldsymbol{y}_i \in S_i$$



 To learn a mixture of subspaces we just need one positive example per class

GPCA Algorithm Polynomial Differentiation

- With noise and outliers
 - Polynomials may not be a perfect union of subspaces



- Normals can estimated correctly by choosing points optimally
- Distance to closest subspace without knowing segmentation?

$$\|x - \tilde{x}\| = \sqrt{\frac{|p_n(x)|}{\|Dp_n(x)\|} + O(\|x - \tilde{x}\|^2)}$$

GPCA: Algorithm for Hyperplane Clustering

- Coefficients of the polynomial can be computed from null space of embedded data matrix $\begin{bmatrix} u & u \\ u & 1 \end{bmatrix}$
 - Solve using least squares
 - N = #data points

$$L_n oldsymbol{c} = egin{bmatrix}
u_n (oldsymbol{x}_1)^T \ dots \
u_n (oldsymbol{x}_N)^T \end{bmatrix} oldsymbol{c} = 0$$

 Number of subspaces can be computed from the rank of embedded data matrix

$$n = \min\{i : \operatorname{rank}(L_i) = M_i - 1\}$$

• Normal to the subspaces $b_1, b_2, \cdots b_n$ can be computed from the derivatives of the polynomial

$$egin{array}{c} oldsymbol{c} \in \mathbb{R}^{M_n} \\ oldsymbol{b_1} oldsymbol{b_2} & \dots & oldsymbol{b_n} \end{array} egin{array}{c} oldsymbol{b_i} = Dp_n(oldsymbol{x})|_{oldsymbol{x} = oldsymbol{y_i}} \quad oldsymbol{y_i} \in S_i \end{array}$$

Temporal Video Segmentation by GPCA

The Society Raffles

©December 7, 1905 American Mutoscope & Biograph Company

Temporal Video Segmentation by GPCA

- Empty living room
- Middle-aged man enters
- Woman enters
- Young man enters, introduces the woman and leaves
- Middle-aged man flirts with woman and steals her tiara

- Middle-aged man checks the time, rises and leaves
- Woman walks him to the door
- Woman returns to her seat
- Woman misses her tiara
- Woman searches her tiara
- Woman sits and dismays

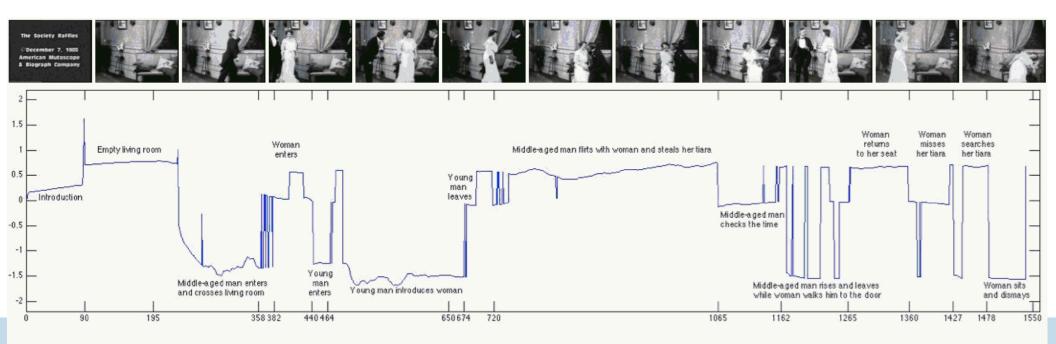
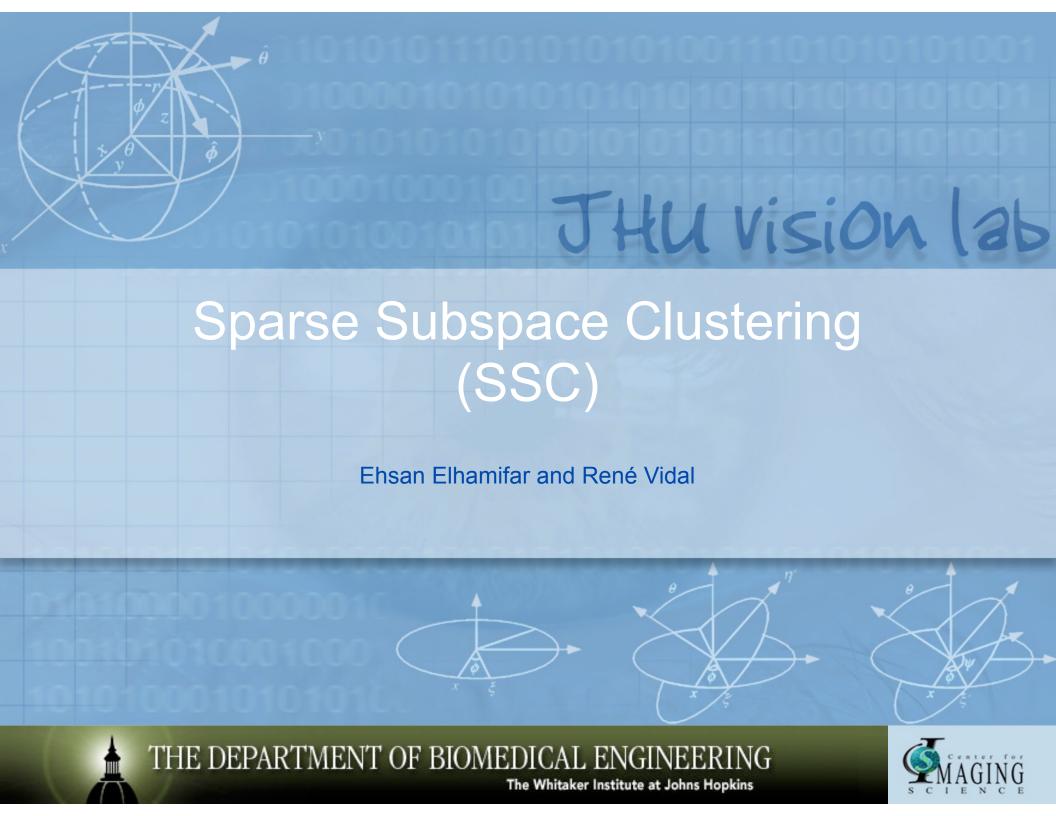
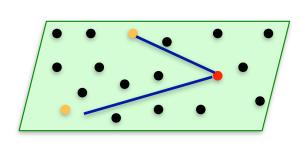


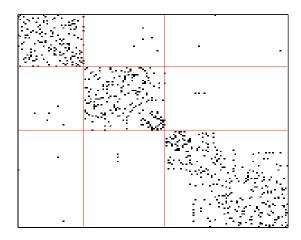
Fig. 5. Temporal segmentation of a scene from the movie The society raffles. The top row shows several key frames from the scene displaying different events. The bottom row shows the temporal evolution of the parameter \hat{c}_t as a function of time.

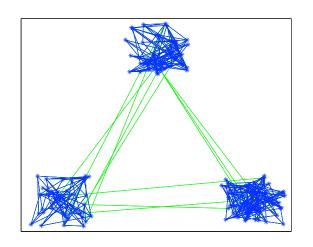


Sparse Subspace Clustering: Spectral Clustering

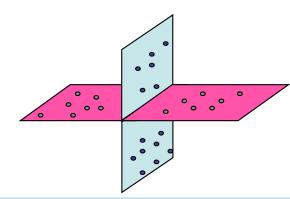
- Spectral clustering
 - Represent data points as nodes in graph G
 - Connect nodes $\,i\,$ and $\,j\,$ with weight $\,c_{ij}\,$
 - Infer clusters from Laplacian of G





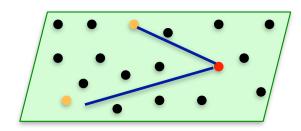


- How to define a good affinity matrix C for subspaces?
 - points in the same subspace: $c_{ij} \neq 0$
 - points in different subspaces: $c_{ij}=0$

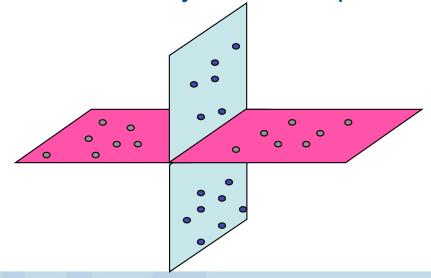


Sparse Subspace Clustering: Spectral Clustering

- Spectral curvature clustering (SCC) (Chen-Lerman '08)
 - Define multiway similarity as normalized volume of d+1 points



- Local subspace affinity (LSA) (Yan-Pollefeys '06)
 - Use the angles between locally fitted subspaces as similarity

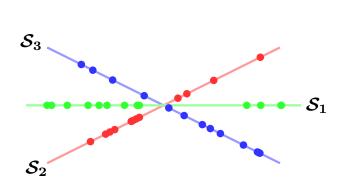


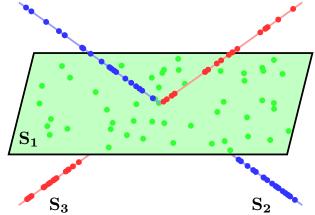
Sparse Subspace Clustering: Intuition

Data in a union of subspaces are self-expressive

$$\mathbf{y}_i = \sum_{j=1}^N c_{ji} \mathbf{y}_j \implies \mathbf{y}_i = Y \mathbf{c}_i \implies Y = Y C$$

Union of subspaces admits subspace-sparse representation





- Under what conditions on the subspaces and the data
 - L0 = subspace sparse?
 - L1 = subspace sparse? $P_1 : \min \|c_i\|_1 \text{ s.t. } y_i = Yc_i, \ c_{ii} = 0$

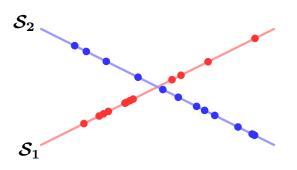
E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010.

E. Elhamifar and R. Vidal. Sparse Subspace Clustering: Algorithm, Theory and Applications. TPAMI 2013.

Sparse Subspace Clustering: Noiseless Data

- Theorem 1: P_1 recovers a subspace-sparse representation if
 - Subspaces are independent:

$$\dim\left(\bigoplus_{i=1}^{n} S_i\right) = \sum_{i=1}^{n} \dim(S_i)$$

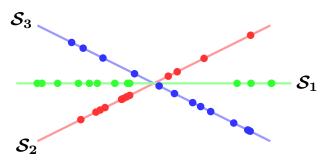


$$P_1 : \min \| \boldsymbol{c}_i \|_1 \text{ s.t. } \boldsymbol{y}_i = Y \boldsymbol{c}_i, \ c_{ii} = 0$$

Sparse Subspace Clustering: Noiseless Data

- Theorem 2: P_1 recovers a subspace-sparse representation if
 - Subspaces are disjoint: $S_i \cap S_j = \{0\}$
 - Subspaces are sufficiently well separated and data are sufficiently well distributed

$$\max_{\text{rank}(\bar{\boldsymbol{Y}}_i)=d_i} \sigma_{d_i}(\bar{\boldsymbol{Y}}_i) > \sqrt{d_i} \max_{j \neq i} \cos(\theta_{ij})$$



- θ_{ij} is the smallest subspace angle between subspaces i and j
 - subspace angles decrease harder recovery
- $\sigma_{d_i}(\bar{Y}_i)$ is the smallest singular value in each subspace
 - data closer to a degenerate subspace harder recovery

$$P_1 : \min \| \boldsymbol{c}_i \|_1 \text{ s.t. } \boldsymbol{y}_i = Y \boldsymbol{c}_i, \ c_{ii} = 0$$

Sparse Subspace Clustering: Noiseless Data

Theorem 3:

- n d-dimensional subspaces chosen independently, uniformly at random
- r d + 1 points per subspace chosen independently, uniformly at random
- $-P_1$ recovers a subspace-sparse representation with high probability if

$$d < \frac{c^2(r)\log\rho}{12\log N}D$$

$$P_1 : \min \| \boldsymbol{c}_i \|_1 \text{ s.t. } \boldsymbol{y}_i = Y \boldsymbol{c}_i, \ c_{ii} = 0$$

Sparse Subspace Clustering: Data with Outliers

Assumptions

- n d-dimensional subspaces chosen independently, uniformly at random
- r d + 1 inliers per subspace chosen independently, uniformly at random
- Noutliers outliers chosen independently and uniformly at random
- Declare point i as an outlier if the solution to P1 satisfies

$$\|\boldsymbol{c}_i\|_1 > \lambda(\gamma)\sqrt{D}$$

Theorem 4:

- P_1 correctly detects all outliers with high probability if

$$N_{outliers} < \frac{1}{D}e^{c\sqrt{D}} - N_{inliers}$$

 $-P_1$ does not detect any inlier as an outlier if

$$P_1 : \min \| \boldsymbol{c}_i \|_1$$
 s.t. $\boldsymbol{y}_i = Y \boldsymbol{c}_i, c_{ii} = 0$

Sparse Subspace Clustering: Corrupted Data

• When the data are corrupted with noise $\tilde{\mathbf{y}} = \mathbf{y} + \mathbf{e}$ $\min \|\mathbf{c}_i\|_1 + \mu \|\mathbf{y}_i - Y\mathbf{c}_i\|_2$

- When the data have missing entries
 - Let $I \subset \{1,\dots,D\}$ be the indices of the missing entries in $\mathbf{y} \in \mathbb{R}^D$
 - Form $\tilde{\mathbf{y}} \in \mathbb{R}^{D-|I|}$ and $\tilde{Y} \in \mathbb{R}^{D-|I| \times N}$ by eliminating rows of \mathbf{y} and Y indexed by I, and solve the same optimization problems
- When the data are corrupted with outlying entries
 - Let $ilde{\mathbf{y}}=Y\mathbf{c}+\mathbf{e}=egin{bmatrix} Y & I_D\end{bmatrix}egin{bmatrix} \mathbf{c} \\ \mathbf{e} \end{bmatrix}$ be corrupted by a vector $\mathbf{e}\in\mathbb{R}^D$
 - The vector $\begin{bmatrix} \mathbf{c}^{\top} & \mathbf{e}^{\top} \end{bmatrix}^{\top}$ is still sparse and can be recovered from

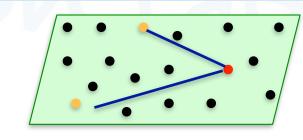
$$\min \| \begin{bmatrix} \mathbf{c} \\ \mathbf{e} \end{bmatrix} \|_1 + \mu \| \tilde{\mathbf{y}} - [Y \quad I_D] \begin{bmatrix} \mathbf{c} \\ \mathbf{e} \end{bmatrix} \|_2$$

E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009.

E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010.

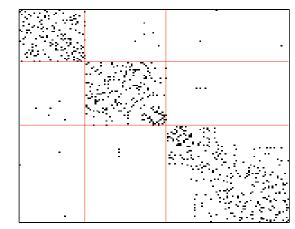
Sparse Subspace Clustering: Algorithm

Represent data points as nodes in graph G



• Find the sparse coefficient vectors $\{\mathbf{c}_i\}_{i=1}^N$

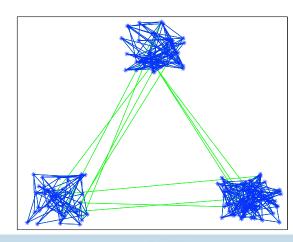
$$\min \|\mathbf{c}_i\|_1 + \mu \|\mathbf{y}_i - Y\mathbf{c}_i\|_2$$

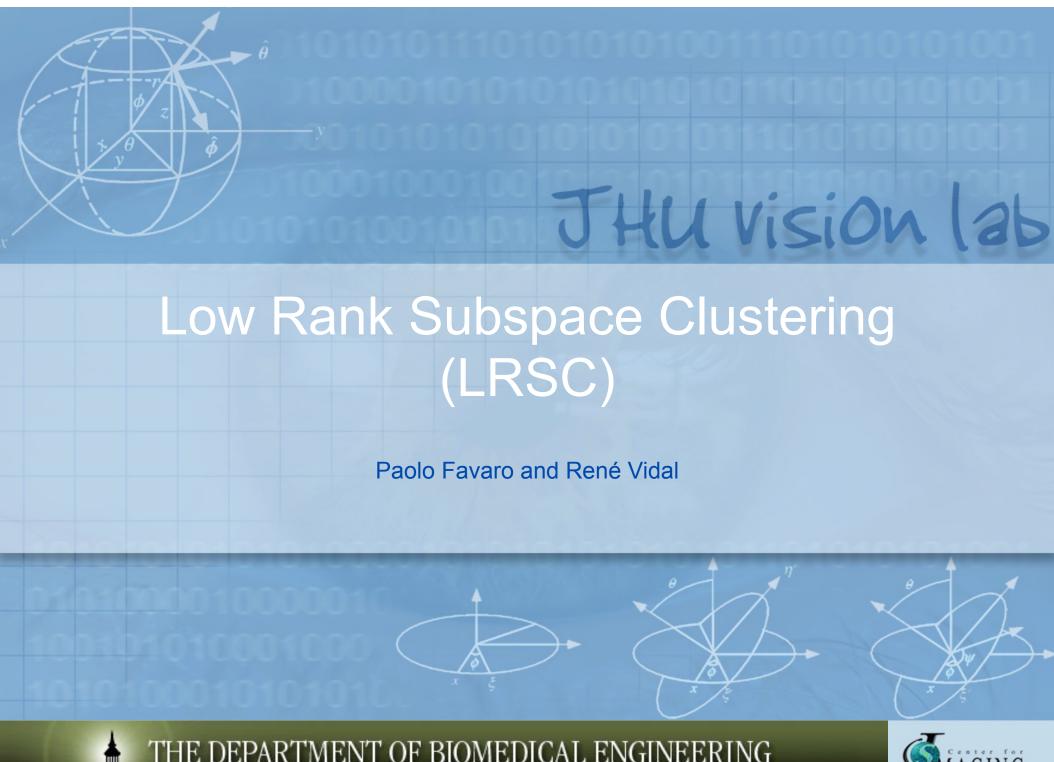


• Connect nodes i and j by an edge with weight

$$|c_{ij}| + |c_{ji}|$$

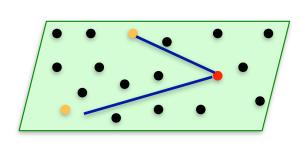
 Spectral clustering: apply K-means to the smallest eigenvectors of the Laplacian of G

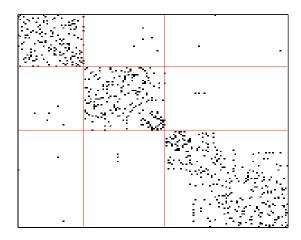


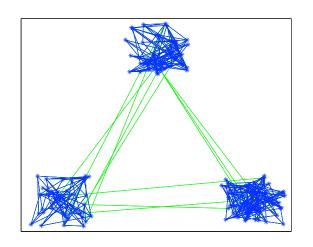


Sparse Subspace Clustering: Spectral Clustering

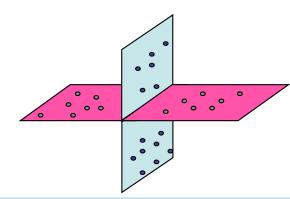
- Spectral clustering
 - Represent data points as nodes in graph G
 - Connect nodes $\,i\,$ and $\,j\,$ with weight $\,c_{ij}\,$
 - Infer clusters from Laplacian of G







- How to define a good affinity matrix C for subspaces?
 - points in the same subspace: $c_{ij} \neq 0$
 - points in different subspaces: $c_{ij}=0$

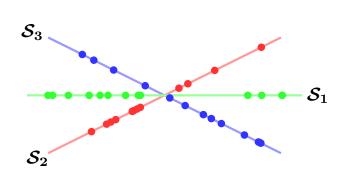


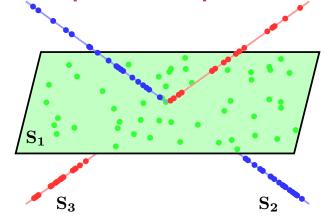
Sparse Subspace Clustering: Intuition

Data in a union of subspaces are self-expressive

$$\mathbf{y}_i = \sum_{j=1}^N c_{ji} \mathbf{y}_j \implies \mathbf{y}_i = Y \mathbf{c}_i \implies Y = Y C$$

Union of subspaces admits subspace-sparse representation





Sparse Subspace Clustering

$$P_1 : \min \| \boldsymbol{c}_i \|_1 \text{ s.t. } \boldsymbol{y}_i = Y \boldsymbol{c}_i, \ c_{ii} = 0$$

Subspace Clustering by Matrix Factorization

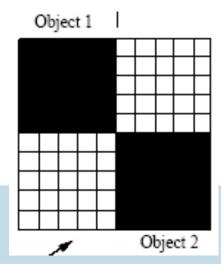
Data from i-th subspace can be factorized as $Y_i = U_i V_i^{\top}$

Data from i-th subspace can be factorized as
$$Y_i = U_i V_i$$

$$Y\Gamma = [Y_1, Y_2, \dots, Y_n] = [U_1, U_2, \dots, U_n] \begin{bmatrix} V_1^\top & & & & \\ & V_2^\top & & & \\ & & \ddots & & \\ & & & V_n^\top \end{bmatrix}$$

- Segmentation of the data can be obtained from

 - Leading singular vector of $Y=\mathcal{U}\Sigma\mathcal{V}^{\top}$ (Boult and Brown '91)
 Shape interaction matrix $C=\mathcal{V}\mathcal{V}^{\top}$ (Costeira & Kanade '95, Gear '94)
- $C_{ij} = 0$ if points i and j lie in two independent subspaces (Kanatani et al. '01, Vidal et al. '08)



Low Rank Subspace Clustering

Data in a union of subspaces are self-expressive

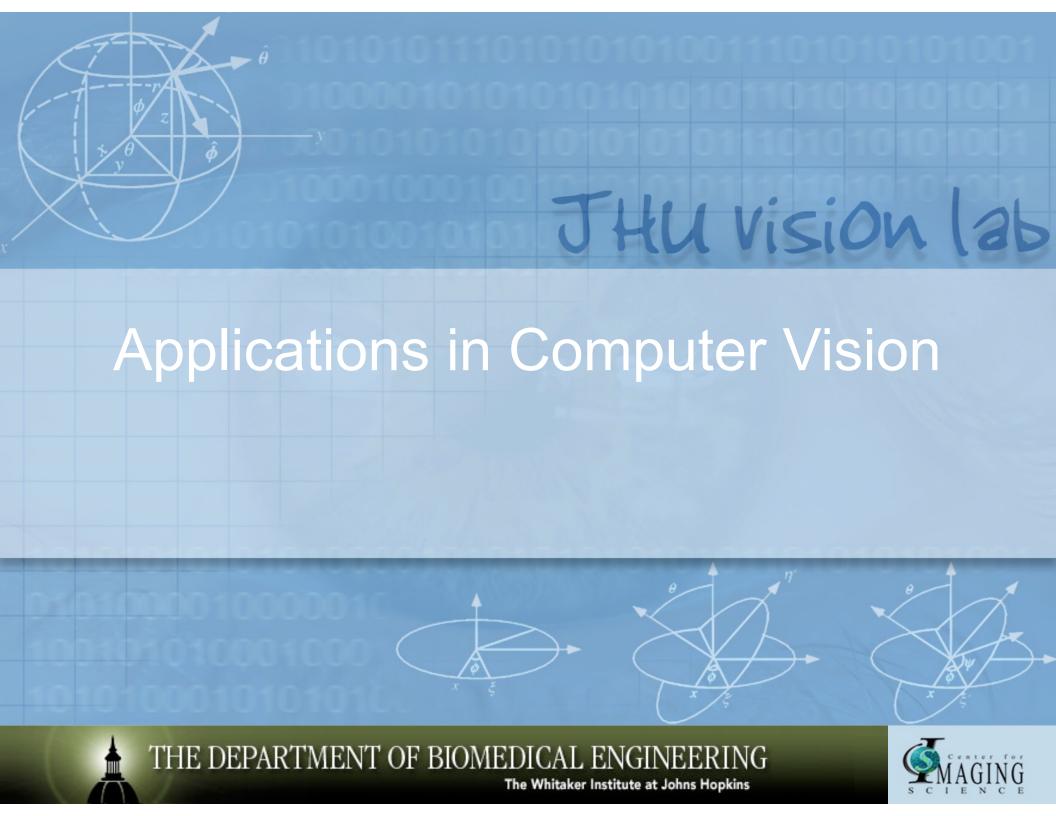
$$m{y}_i = \sum_{j=1}^N c_{ji} m{y}_j \implies m{y}_j = Y m{c}_i \implies Y = Y C - C$$
 is sparse – C is low-rank

Low Rank Subspace Clustering (noiseless case)

$$\min_{C} \|C\|_{*} \text{ s.t. } Y = YC \qquad \Longrightarrow \qquad \begin{aligned} Y &= \mathcal{U}\Sigma\mathcal{V}^{\top} \\ C &= \mathcal{V}\mathcal{V}^{\top} \end{aligned}$$

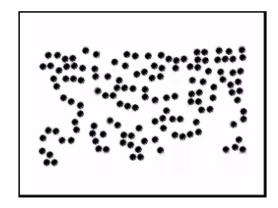
Low Rank Subspace Clustering (noisy case)

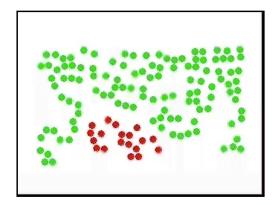
$$\min_{C} \|C\|_* + \frac{\tau}{2} \|Y - YC\|_F^2 \qquad \Longrightarrow \qquad C = \mathcal{V}(I - \frac{1}{\tau} \Sigma^{-2}) \mathcal{V}^{\top}$$



Experiments on 3D Motion Segmentation

- Motion segmentation problem
 - Input: multiple images of a scene with multiple rigid-body motions
 - Output: number of motions, motion model parameters, segmentation





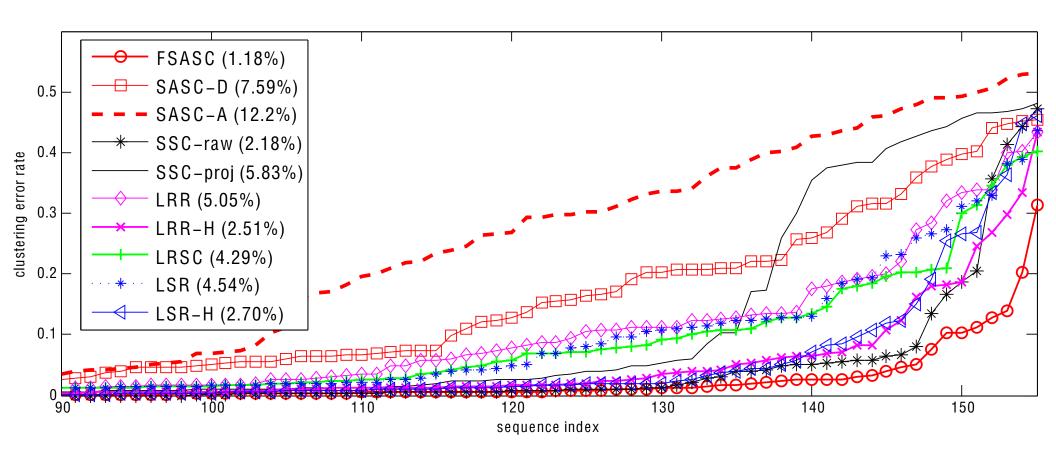
- Motion of a rigid-body: 4D subspace (Boult and Brown '91, Tomasi and Kanade '92)
 - P = #points
 - F = #frames

$$egin{bmatrix} egin{bmatrix} oldsymbol{x}_{11} & \cdots & oldsymbol{x}_{1P} \ dramptoonderm{:} & \ddots & dramptoonderm{:} \ oldsymbol{x}_{F1} & \cdots & oldsymbol{x}_{FP} \end{bmatrix} = egin{bmatrix} oldsymbol{A}_1 \ dramptoonderm{:} \ oldsymbol{A}_F \end{bmatrix} egin{bmatrix} oldsymbol{X}_1 & \cdots & oldsymbol{X}_P \end{bmatrix} \ oldsymbol{x}_{4 imes P} \ oldsymbol{x}_{4 imes P} \end{bmatrix}$$

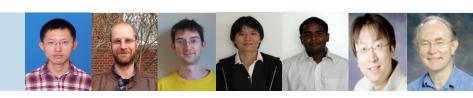
Experiments on 3D Motion Segmentation

Misclassification rates on Hopkins 155 database

R. Tron and R. Vidal. A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms. CVPR 2007.

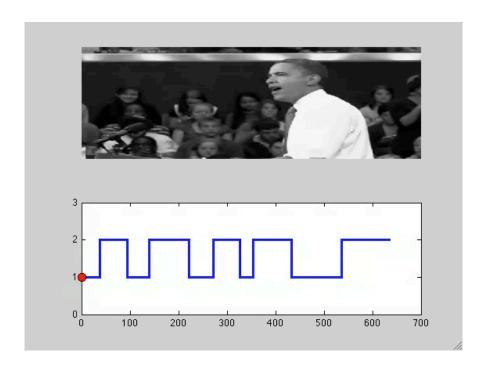


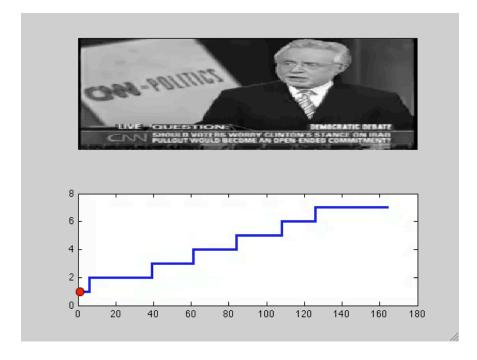
Vidal et al., ECCV02, IJCV06; Vidal, Ma and Sastry CVPR03, PAMI05; Vidal and Sastry CVPR03; Vidal and Ma ECCV04, JMIV06; Vidal and Hartley, CVPR04; Tron and Vidal, CVPR07; Li et al. CVPR07; Goh and Vidal CVPR07; Vidal and Hartley, PAMI08; Vidal, Tron and Hartley IJCV08; Rao et al. CVPR 08, PAMI 09; Elhamifar and Vidal, CVPR 09, TPAMI 13; Vidal SPM11; Tsakiris '15



Experiments on Video Segmentation

- Model each video segment as a low-dimensional subspace
- Cluster video frames into multiple segments

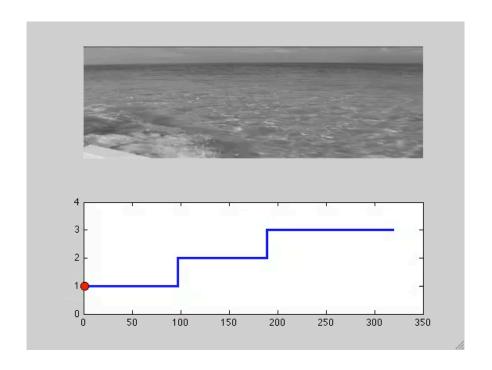


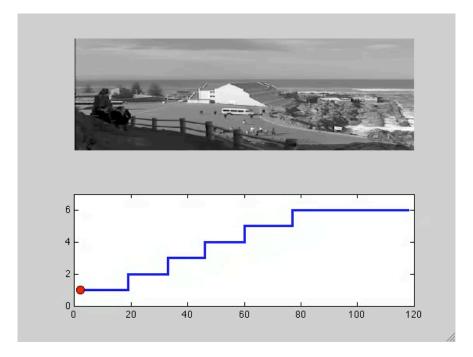


- Advantages
 - SSC easily detects sharp transitions in the video
 - SSC can handle camera motion and scene variations

Experiments on Video Segmentation

- Model each video segment as a low-dimensional subspace
- Cluster video frames into multiple segments



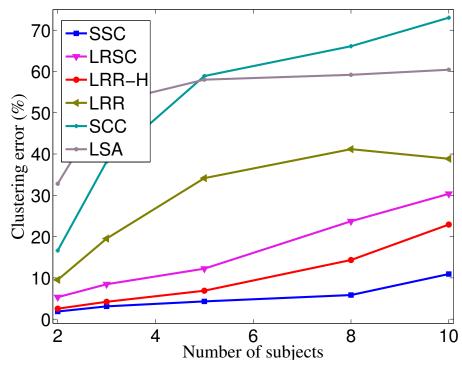


- Advantages
 - SSC easily detects sharp transitions in the video
 - SSC can handle camera motion and scene variations

Experiments on Face Clustering

D = 2,016 dimensional data

- Faces under varying illumination
 - 9D subspace
- Extended Yale B dataset
 - 38 subjects
 - 64 images per subject
- Clustering error
 - SSC < 2.0% error for 2 subjects
 - SSC < 11.0% error for 10 subjects



Conclusions

- Many problems in computer vision can be posed as subspace clustering and classification problems
 - Spatial and temporal video segmentation
 - Face clustering under varying illumination
 - Face classification
- These problems can be solved using
 - Generalized Principal Component Analysis (GPCA)
 - Sparse Subspace Clustering (SSC)
 - Low Rank Subspace Clustering (LRSC)
- This algorithms is provably correct when
 - Subspaces are sufficiently separated
 - Data are well distributed within each subspace

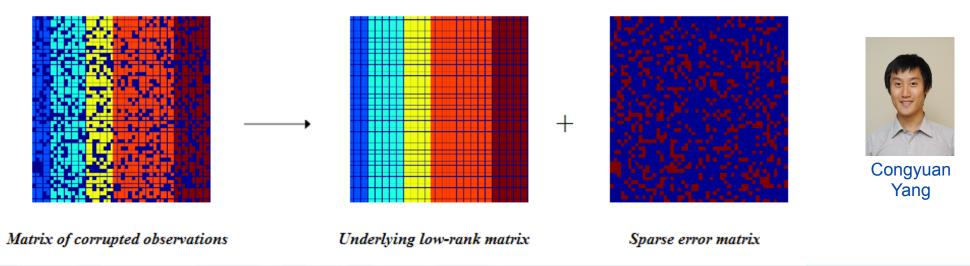
What's Next

• Big Data (Peng '13, Dyer '13, You '15)

	GPCA	SSC	OMP	?
Dimension of the data	10	10,000	10,000	1M
Number of data points	1000	10,000	100,000	1M

Chong You

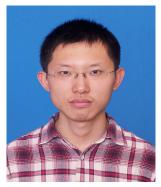
• Missing Data: (Grubber '04, Eriksson '12, Balzano '12, Pimentel '14, Candes '14, Yang'15)



Acknowledgements

- Algebraic Methods
 - Y. Ma, S. Sastry, M. Tsakiris

- Sparse and Low Rank
 - E. Elhamifar, P. Favaro, C. You



- Funding
 - Sloan Research Fellowship
 - ONR Young Investigator Award
 - NSF CAREER Award 0447739

- More information/code
 - Vision Lab @ Johns Hopkins
 University http://www.vision.jhu.edu

Thank You!

